首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adipocyte fate commitment is characterized by morphological changes of fibroblastic pre-adipocyte cells, and specifically by accumulation of lipid droplets (LDs) as part of the adipogenesis metabolism. Formation of LDs indicates the production of triglycerides from glucose through an insulin-regulated glucose internalization process. In obesity, adipocytes typically become insulin resistant, and glucose transport into the cells is impaired, resulting in type 2 diabetes. In the present study, we monitored the adipogenesis in 3T3-L1 cultured cells exposed to high (450 mg/dL hyperglycemia) and low (100 mg/dL physiological) glucose concentrations, in a novel cell culture model system of diabesity. In addition to glucose conditions, cells were concurrently exposed to different substrate tensile strains (12% and control) based on our prior work which revealed that adipogenesis is accelerated in cultures subjected to static, chronic substrate tensile deformations. Phase-contrast images were taken throughout the adipogenesis process (3 weeks) and were analyzed by an image processing algorithm which quantitatively monitors cell differentiation and lipid accumulation (number of LDs per cell and their radius as well as cell size and shape). The results indicated that high glucose concentrations and substrate tensile strains delivered to adipocytes accelerated lipid production by 1.7- and 1.4-fold, respectively. In addition, significant changes in average cell projected area and in other morphological attributes were observed during the differentiation process. The importance of this study is in characterizing the adipogenesis parameters as potential read-outs that can predict the occurrence of insulin resistance in the development of diabesity.  相似文献   

2.
Cells change their form and function by assembling actin stress fibers at their base and exerting traction forces on their extracellular matrix (ECM) adhesions. Individual stress fibers are thought to be actively tensed by the action of actomyosin motors and to function as elastic cables that structurally reinforce the basal portion of the cytoskeleton; however, these principles have not been directly tested in living cells, and their significance for overall cell shape control is poorly understood. Here we combine a laser nanoscissor, traction force microscopy, and fluorescence photobleaching methods to confirm that stress fibers in living cells behave as viscoelastic cables that are tensed through the action of actomyosin motors, to quantify their retraction kinetics in situ, and to explore their contribution to overall mechanical stability of the cell and interconnected ECM. These studies reveal that viscoelastic recoil of individual stress fibers after laser severing is partially slowed by inhibition of Rho-associated kinase and virtually abolished by direct inhibition of myosin light chain kinase. Importantly, cells cultured on stiff ECM substrates can tolerate disruption of multiple stress fibers with negligible overall change in cell shape, whereas disruption of a single stress fiber in cells anchored to compliant ECM substrates compromises the entire cellular force balance, induces cytoskeletal rearrangements, and produces ECM retraction many microns away from the site of incision; this results in large-scale changes of cell shape (> 5% elongation). In addition to revealing fundamental insight into the mechanical properties and cell shape contributions of individual stress fibers and confirming that the ECM is effectively a physical extension of the cell and cytoskeleton, the technologies described here offer a novel approach to spatially map the cytoskeletal mechanics of living cells on the nanoscale.  相似文献   

3.
4.
The 3T3-L1 cell line, derived from 3T3 cells, is widely used in biological research on adipose tissue. 3T3-L1 cells have a fibroblast-like morphology, but, under appropriate conditions, they differentiate into an adipocyte-like phenotype. During the differentiation process, 3T3-L1 cells increase the synthesis of triglycerides and acquire the behavior of adipose cells. In particular, triglycerides accumulate in lipid droplets (LDs) embedded in the cytoplasm. The number and the size distribution of the LDs is often correlated with obesity and many other pathologies linked with fat accumulation. The integrated optical density (IOD) of the LDs is related with the amount of triglycerides in the droplets. The aim of this study is the attempt to characterize the size distribution and the IOD of the LDs in 3T3-L1 differentiated cells. The cells were differentiated into adipocytes for 5 days with a standard procedure, stained with Oil Red O and observed with an optical microscope. The diameter, area, optical density of the LDs were measured. We found an asymmetry of the kernel density distribution of the maximum Feret’s diameter of the LDs with a tail due to very large LDs. More information regarding the birth of the LDs could help in finding the best mathematical model in order to analyze fat accumulation in adipocytes.Key words: Lipid droplet, 3T3-L1, adipocyte, fat, triglyceride accumulation, integrated optical density  相似文献   

5.
Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process.  相似文献   

6.
Adipogenesis and increase in fat tissue mass are mechanosensitive processes and hence should be influenced by the mechanical properties of adipocytes. We evaluated subcellular effective stiffnesses of adipocytes using atomic force microscopy (AFM) and interferometric phase microscopy (IPM), and we verified the empirical results using finite element (FE) simulations. In the AFM studies, we found that the mean ratio of stiffnesses of the lipid droplets (LDs) over the nucleus was 0.83 ± 0.14, from which we further evaluated the ratios of LDs over cytoplasm stiffness, as being in the range of 2.5 to 8.3. These stiffness ratios, indicating that LDs are stiffer than cytoplasm, were verified by means of FE modeling, which simulated the AFM experiments, and provided good agreement between empirical and model-predicted structural behavior. In the IPM studies, we found that LDs mechanically distort their intracellular environment, which again indicated that LDs are mechanically stiffer than the surrounding cytoplasm. Combining these empirical and simulation data together, we provide in this study evidence that adipocytes stiffen with differentiation as a result of accumulation of LDs. Our results are relevant to research of adipose-related diseases, particularly overweight and obesity, from a mechanobiology and cellular mechanics perspectives.  相似文献   

7.
Adipogenesis and increase in fat tissue mass are mechanosensitive processes and hence should be influenced by the mechanical properties of adipocytes. We evaluated subcellular effective stiffnesses of adipocytes using atomic force microscopy (AFM) and interferometric phase microscopy (IPM), and we verified the empirical results using finite element (FE) simulations. In the AFM studies, we found that the mean ratio of stiffnesses of the lipid droplets (LDs) over the nucleus was 0.83 ± 0.14, from which we further evaluated the ratios of LDs over cytoplasm stiffness, as being in the range of 2.5 to 8.3. These stiffness ratios, indicating that LDs are stiffer than cytoplasm, were verified by means of FE modeling, which simulated the AFM experiments, and provided good agreement between empirical and model-predicted structural behavior. In the IPM studies, we found that LDs mechanically distort their intracellular environment, which again indicated that LDs are mechanically stiffer than the surrounding cytoplasm. Combining these empirical and simulation data together, we provide in this study evidence that adipocytes stiffen with differentiation as a result of accumulation of LDs. Our results are relevant to research of adipose-related diseases, particularly overweight and obesity, from a mechanobiology and cellular mechanics perspectives.  相似文献   

8.
Regulation of the nitric oxide system in human adipose tissue   总被引:8,自引:0,他引:8  
Nitric oxide (NO) is involved in adipose tissue biology by influencing adipogenesis, insulin-stimulated glucose uptake, and lipolysis. The enzymes responsible for NO formation in adipose cells are endothelial NO synthase (eNOS) and inducible NO synthase (iNOS), whereas neuronal NO synthase (bNOS) is not expressed in adipocytes. We characterized the expression pattern and the influence of adipogenesis, obesity, and weight loss on genes belonging to the NO system in human subcutaneous adipose cells by combining in vivo and in vitro studies. Expression of most of the genes known to belong to the NO system (eNOS, iNOS, subunits of the soluble guanylate cyclase, and both genes encoding cGMP-dependent protein kinases) in human adipose tissue and isolated human adipocytes was detected. In vitro adipogenic differentiation increased the expression level of iNOS significantly, whereas eNOS expression levels were not influenced. The genes encoding eNOS, iNOS, and cGMP-dependent protein kinase 1 were expressed at higher levels in obese women. Expression of these genes, however, was not influenced by 5% weight loss. Insulin and angiotensin II (Ang II) increased NO production by human preadipocytes in vitro. Increased eNOS and iNOS expression in adipocytes and local effects of insulin and Ang II may increase adipose tissue production of NO in obesity.  相似文献   

9.
Adipose tissue is a crucial site for pathologic changes in obesity/metabolic syndrome-related diseases. Interaction between adipogenesis and reactive oxygen species (ROS) in adipose tissue involving chronic low-grade inflammation is postulated to be causal in the development of insulin resistance and other metabolic consequences. We used different culture systems to investigate the relationship between ROS and adipogenesis at three levels: within adipocytes, during adipocyte-monocyte interactions, and in a subcutaneous adipose tissue model. The effects of highly hydroxylated fullerene (HHF; C60(OH)36) on adipogenesis-accompanying oxidative stress and inflammatory changes were examined using these three systems. We demonstrated that H2O2 stimulates lipid accumulation in 3T3-L1 preadipocytes, and lipid uptake causes ROS generation in OP9 preadipocytes, both of which were then markedly suppressed with HHF treatment. HHF significantly inhibited the adipogenic stimulant insulin-rich serum replacement (SR)-induced triacylglycerol accumulation, ROS production, and macrophage activation in cultured OP9 cells and an OP9-U937 monocyte-like cell coculture system. H2O2-induced intracellular ROS production in OP9 adipocytes was also notably inhibited by HHF. We developed a three-dimensional subcutaneous adipose-tissue equivalent (SATE) consisting of air-exposed cultures of HaCaT keratinocytes on an OP9 adipocyte-populated collagen gel in a culture insert. With SR stimulation and under suitable conditions, fat accumulation, ROS generation, and macrophage infiltration were observed in the SATE and significantly inhibited by HHF. By western blotting, we demonstrated that HHF localized at the cytoskeleton, which controls the transport of lipids. In conclusion, HHF is able to inhibit oxidative stress in adipocytes and adipogenesis-related macrophage activation in adipose tissues through its antioxidation.  相似文献   

10.
Impairment of redox homeostasis has been extensively associated with obesity, as a consequence of the chronic inflammatory state present in overweight subjects. Deregulation of glutathione (GSH), the most important non‐enzymatic intracellular anti‐oxidant, induces insulin resistance in mature adipocytes, but data are lacking about its effects on adipogenesis. In this report we demonstrate that during adipogenesis of 3T3‐L1 cells the GSH/GSSG ratio decreases, shifting redox status towards oxidizing conditions. Moreover, we demonstrate that inhibition of GSH synthesis, obtained by treatment with L ‐buthionine‐sulfoximine (BSO), enhances C/EBPβ LAP/LIP ratio and PPARγ expression during mitotic clonal expansion (MCE) stimulating adipogenesis. On the contrary, GSH ethyl ester (GSHest) supplementation completely abrogates this process also in the presence of BSO. GSH decrement during the first 24 h of adipogenesis is sufficient to induce higher triglyceride accumulation in differentiated adipocytes with respect to control, whereas GSHest treatment inhibits lipid droplets formation. We further demonstrate that Resveratrol (RV) could exert anti‐adipogenic properties also by increasing GSH content through γ‐glutamyl‐cysteine ligase (GCL) induction. Overall data indicate that in pre‐adipocytes the decrease of GSH accelerates adipogenesis, suggesting that the use of agents able to maintain GSH redox status in adipose tissue, such as RV, could be promising in stopping the lipogenic loop of obesity. J. Cell. Physiol. 226: 2016–2024, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of systemic glucose and insulin homeostasis; however, its exact role in adipocytes is poorly understood. This study was to elucidate the role of PTP1B in adipocyte differentiation and its implication in obesity. During differentiation of 3T3-L1 white preadipocytes, PTP1B decreased progressively with adipocyte maturation. Lentivirus-mediated PTP1B overexpression in preadipocytes delayed adipocyte differentiation, shown as lack of mature adipocytes, low level of lipid accumulation, and down-regulation of main markers (PPARγ2, SREBP-1c, FAS and LPL). In contrast, lentivirus-mediated PTP1B knockdown accelerated adipocyte differentiation, demonstrated as full of mature adipocytes, high level of lipid accumulation, and up-regulation of main markers. Dominant-negative inhibition on endogenous PTP1B by lentivirus-mediated overexpression of PTP1B double mutant in Tyr-46 and Asp-181 residues (LV-D/A-Y/F) also stimulated adipogenesis, more efficient than PTP1B knockdown. Diet-induced obesity mice exhibited an up-regulation of PTP1B and TNFα accompanied by a down-regulation of PPARγ2 in white adipose tissue. TNFα recombinant protein impeded PTP1B reduction and inhibited adipocyte differentiation in vitro; this inhibitory effect was prevented by LV-D/A-Y/F. Moreover, PTP1B inhibitor treatment improved adipogenesis and suppressed TNFα in adipose tissue of obese mice. All together, PTP1B negatively regulates adipocyte development and may mediate TNFα action to impair adipocyte differentiation in obesity. Our study provides novel evidence for the importance of PTP1B in obesity and for the potential application of PTP1B inhibitors.  相似文献   

12.
The total contribution of the acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2, to mammalian triacylglycerol (TG) synthesis has not been determined. Similarly, whether DGAT enzymes are required for lipid droplet (LD) formation is unknown. In this study, we examined the requirement for DGAT enzymes in TG synthesis and LDs in differentiated adipocytes with genetic deletions of DGAT1 and DGAT2. Adipocytes with a single deletion of either enzyme were capable of TG synthesis and LD formation. In contrast, adipocytes with deletions of both DGATs were severely lacking in TG and did not have LDs, indicating that DGAT1 and DGAT2 account for nearly all TG synthesis in adipocytes and appear to be required for LD formation during adipogenesis. DGAT enzymes were not absolutely required for LD formation in mammalian cells, however; macrophages deficient in both DGAT enzymes were able to form LDs when incubated with cholesterol-rich lipoproteins. Although adipocytes lacking both DGATs had no TG or LDs, they were fully differentiated by multiple criteria. Our findings show that DGAT1 and DGAT2 account for the vast majority of TG synthesis in mice, and DGAT function is required for LDs in adipocytes, but not in all cell types.  相似文献   

13.
Lipid droplets (LDs) are the main storage organelles for triglycerides. Elucidation of lipid accumulation mechanisms and metabolism are essential to understand obesity and associated diseases. Adipogenesis has been well studied in murine 3T3-L1 and human Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cell lines. However, most techniques for measuring LD accumulation are either not quantitative or can be destructive to samples. Here, we describe a novel, label-free LD quantification technique (LipiD-QuanT) to monitor lipid dynamics based on automated image analysis of phase contrast microscopy images acquired during in vitro human adipogenesis. We have applied LipiD-QuanT to measure LD accumulation during differentiation of SGBS cells. We demonstrate that LipiD-QuanT is a robust, nondestructive, time- and cost-effective method compared with other triglyceride accumulation assays based on enzymatic digest or lipophilic staining. Further, we applied LipiD-QuanT to measure the effect of four potential pro- or antiobesogenic substances: DHA, rosiglitazone, elevated levels of D-glucose, and zinc oxide nanoparticles. Our results revealed that 2 µmol/l rosiglitazone treatment during adipogenesis reduced lipid production and caused a negative shift in LD diameter size distribution, but the other treatments showed no effect under the conditions used here.  相似文献   

14.
Extracellular matrix (ECM) has a marked influence on adipose tissue development. Adipose tissue formation is initiated with proliferation of preadipocytes and migration before undergoing further differentiation into mature adipocytes. Previous studies showed that collagen I (col I) provides a good substratum for 3T3-L1 preadipocytes to grow and migrate. However, it remains unclear whether and how col I regulates adipogenic differentiation of preadipocytes. This study reports that lipid accumulation, representing in vitro adipogenesis of the 3T3-L1 preadipocytes or the mouse primary adipocyte precursor cells derived from subcutaneous adipose tissue in the inguinal region is inhibited by the culture on col I, owing to downregulation of adipogenic factors. Previous study shows that col I enhances 3T3-L1 cell migration via stimulating the nuclear translocation of yes-associated protein (YAP). In this study, we report that downregulation of YAP is associated with in vitro adipogenesis of preadipocytes as well as with in vivo adipose tissue of high-fat diet fed mice. Increased expression of YAP in the cells cultured on col I-coated dishes is correlated with repression of adipogenic differentiation processes. The inactivation of YAP using YAP inhibitor, verteporfin, or YAP small-interfering RNA enhanced adipogenic differentiation and reversed the inhibitory effect of col I. Activation of YAP either by the transfection of YAP plasmid or the silence of large tumor suppressor 1 (LATS1), an inhibitory kinase of YAP, inhibited adipogenic differentiation. The results indicate that col I inhibits adipogenic differentiation via YAP activation in vitro.  相似文献   

15.
BackgroundThe regulative effects of caudatin, a C-21 steroid that is identified from Cynanchum bungee roots, on adipogenesis and obesity have not been studied. Many studies have demonstrated that the activation of hedgehog (Hh) signaling can help prevent obesity. Therefore, we hypothesized that caudatin can inhibit adipogenesis and obesity via activating the Hh signaling pathway.MethodsTo investigate the effects of caudatin on adipogenesis in 3T3-L1 preadipocytes and high-fat diet induced obesity in C57BL/6 mice, in vitro and in vivo experiments were performed. For in vitro evaluation, Oil red O staining were used to represent lipid accumulation in differentiated 3T3-L1 adipocytes. For in vivo assessment, male 5 week-old C57BL/6 mice were fed with standard chow diet, high-fat diet (HFD), HFD with 25 mg/kg caudatin, HFD with 1mg/kg purmorpharmine for 10 weeks, respectively. Hh signaling and key adipogenic marker involved in adipogenesis were evaluated by real-time PCR and western blot. The adipocyte size of white adopose tissue and lipid storage of liver were visualized by hematoxylin and eosin staining. In addition, the expression of Gli1 and peroxisome proliferator-activated receptor γ (PPARγ) in white adipose tissue were investigated by immunohistochemistry staining.ResultsCaudatin suppressed the accumulation of lipid droplets and downregulated the expression of key adipogenic factors, i.e., peroxisome proliferator-activated receptor γ PPARγ and CCAAT-enhancer binding protein α (C/EBPα), through activating Hh signaling in differentiated 3T3-L1 cells. Furthermore, caudatin and the Hh activator purmorpharmine significantly decreased body weight gain and white adipose tissue (WAT) weight in HFD-induced mice and affected adipogenic markers and Hh signaling mediators in WAT, which were in line with the in vitro experimental results.ConclusionTo our best knowledge, it is the first report to demonstrate that caudatin downregulated adipocyte differentiation and suppressed HFD-induced body weight gain through activating the Hh signaling pathway, suggesting that caudatin can potentially counteract obesity.  相似文献   

16.
Hypertrophy of adipocytes represents the main cause of obesity. We investigated in vitro the changes associated with adipocyte differentiation and hypertrophy focusing on the nuclear morphometry and chromatin epigenetic remodelling. The 3 T3-L1 pre-adipocytes were firstly differentiated into mature adipocytes, then cultured with long-chain fatty acids to induce hypertrophy. Confocal and super-resolution stimulation emission depletion (STED) microscopy combined with ELISA assays allowed us to explore nuclear architecture, chromatin distribution and epigenetic modifications. In each condition, we quantified the triglyceride accumulation, the mRNA expression of adipogenesis and dysfunction markers, the release of five pro-inflammatory cytokines. Confocal microscopy revealed larger volume and less elongated shape of the nuclei in both mature and hypertrophic cells respect to pre-adipocytes, and a trend toward reduced chromatin compaction. Compared to mature adipocytes, the hypertrophic phenotype showed larger triglyceride content, increased PPARγ expression reduced IL-1a release, and up-regulation of a pool of genes markers for adipose tissue dysfunction. Moreover, a remodelling of both epigenome and chromatin organization was observed in hypertrophic adipocytes, with an increase in the average fluorescence of H3K9 acetylated domains in parallel with the increase in KAT2A expression, and a global hypomethylation of DNA. These findings making light on the nuclear changes during adipocyte differentiation and hypertrophy might help the strategies for treating obesity and metabolic complications.  相似文献   

17.
With accelerating rates of obesity and type 2 diabetes world-wide, interest in studying the adipocyte and adipose tissue is increasing. Human adipose derived stem cells - differentiated to adipocytes in vitro - are frequently used as a model system for white adipocytes, as most of their pathways and functions resemble mature adipocytes in vivo. However, these cells are not completely like in vivo mature adipocytes. Hosting the cells in a more physiologically relevant environment compared to conventional two-dimensional cell culturing on plastic surfaces, can produce spatial cues that drive the cells towards a more mature state. We investigated the adipogenesis of adipose derived stem cells on electro spun polycaprolactone matrices and compared functionality to conventional two-dimensional cultures as well as to human primary mature adipocytes. To assess the degree of adipogenesis we measured cellular glucose-uptake and lipolysis and used a range of different methods to evaluate lipid accumulation. We compared the averaged results from a whole population with the single cell characteristics – studied by coherent anti-Stokes Raman scattering microscopy - to gain a comprehensive picture of the cell phenotypes. In adipose derived stem cells differentiated on a polycaprolactone-fiber matrix; an increased sensitivity in insulin-stimulated glucose uptake was detected when cells were grown on either aligned or random matrices. Furthermore, comparing differentiation of adipose derived stem cells on aligned polycaprolactone-fiber matrixes, to those differentiated in two-dimensional cultures showed, an increase in the cellular lipid accumulation, and hormone sensitive lipase content. In conclusion, we propose an adipocyte cell model created by differentiation of adipose derived stem cells on aligned polycaprolactone-fiber matrices which demonstrates increased maturity, compared to 2D cultured cells.  相似文献   

18.
19.
Dysfunction of adipocytes and adipose tissue is a primary defect in obesity and obesity-associated metabolic diseases. Interferon regulatory factor 3 (IRF3) has been implicated in adipogenesis. However, the role of IRF3 in obesity and obesity-associated disorders remains unclear. Here, we show that IRF3 expression in human adipose tissues is positively associated with insulin sensitivity and negatively associated with type 2 diabetes. In mouse pre-adipocytes, deficiency of IRF3 results in increased expression of PPARγ and PPARγ-mediated adipogenic genes, leading to increased adipogenesis and altered adipocyte functionality. The IRF3 knockout (KO) mice develop obesity, insulin resistance, glucose intolerance, and eventually type 2 diabetes with aging, which is associated with the development of white adipose tissue (WAT) inflammation. Increased macrophage accumulation with M1 phenotype which is due to the loss of IFNβ-mediated IL-10 expression is observed in WAT of the KO mice compared to that in wild-type mice. Bone-marrow reconstitution experiments demonstrate that the nonhematopoietic cells are the primary contributors to the development of obesity and both hematopoietic and nonhematopoietic cells contribute to the development of obesity-related complications in IRF3 KO mice. This study demonstrates that IRF3 regulates the biology of multiple cell types including adipocytes and macrophages to prevent the development of obesity and obesity-related complications and hence, could be a potential target for therapeutic interventions for the prevention and treatment of obesity-associated metabolic disorders.Subject terms: Interferons, Preclinical research  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号