首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liposomal formulation of curcumin is an important therapeutic agent for the treatment of various cancers. Despite extensive studies on the biological effects of this formulation in cancer treatment, much remains unknown about curcumin–liposome interactions. Understanding how different lipid bilayers respond to curcumin molecule may help us to design more effective liposomal curcumin. Here, we used molecular dynamics simulation method to investigate the behavior of curcumin in two lipid bilayers commonly used in preparation of liposomal curcumin, namely dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylglycerol (DMPG). First, the free energy barriers for translocation of one curcumin molecule from water to the lipid bilayer were determined by using the potential of mean force (PMF). The computed free energy profile exhibits a global minimum at the solvent–headgroup interface (LH region) for both lipid membranes. We also evaluated the free energy difference between the equilibrium position of curcumin in the lipid bilayer and bulk water as the excess chemical potential. Our results show that curcumin has the higher affinity in DMPG compared to DPPC lipid bilayer (?8.39 vs. ?1.69 kBT) and this is related to more hydrogen bond possibility for curcumin in DMPG lipid membrane. Next, using an unconstrained molecular dynamic simulation with curcumin initially positioned at the center of lipid bilayer, we studied various properties of each lipid bilayer system in the presence of curcumin molecule that was in full agreement with PMF and experimental data. The results of these simulation studies suggest that membrane composition could have a large effect on interaction of curcumin–lipid bilayer.  相似文献   

2.
Hepatic fibrosis is concomitant with sinusoidal pathological angiogenesis, which has been highlighted as novel therapeutic targets for the treatment of chronic liver disease. Our prior studies have demonstrated that curcumin has potent antifibrotic activity, but the mechanisms remain to be elucidated. The current work demonstrated that curcumin ameliorated fibrotic injury and sinusoidal angiogenesis in rat liver with fibrosis caused by carbon tetrachloride. Curcumin reduced the expression of a number of angiogenic markers in fibrotic liver. Experiments in vitro showed that the viability and vascularization of rat liver sinusoidal endothelial cells and rat aortic ring angiogenesis were not impaired by curcumin. These results indicated that hepatic stellate cells (HSCs) that are characterized as liver‐specific pericytes could be potential target cells for curcumin. Further investigations showed that curcumin inhibited VEGF expression in HSCs associated with disrupting platelet‐derived growth factor‐β receptor (PDGF‐βR)/ERK and mTOR pathways. HSC motility and vascularization were also suppressed by curcumin associated with blocking PDGF‐βR/focal adhesion kinase/RhoA cascade. Gain‐ or loss‐of‐function analyses revealed that activation of peroxisome proliferator‐activated receptor‐γ (PPAR‐γ) was required for curcumin to inhibit angiogenic properties of HSCs. We concluded that curcumin attenuated sinusoidal angiogenesis in liver fibrosis possibly by targeting HSCs via a PPAR‐γ activation‐dependent mechanism. PPAR‐γ could be a target molecule for reducing pathological angiogenesis during liver fibrosis.  相似文献   

3.
The breakdown of the blood–brain barrier (BBB) has been considered to be a key step in the disease process of a number of neurological disorders such as cerebral ischemia and Alzheimer's disease. Many in vitro BBB models derived from animal tissues have been established to elucidate the mechanism of BBB insufficiency. However, only a few human immortalized in vitro BBB models have been reported. In the present study, a temperature‐sensitive SV40‐T antigen was introduced to immortalize cells using a retrovirus to obtain a better human in vitro BBB model which sustains physiological properties. This endothelial cell (EC) line, termed TY08, showed a spindle‐shaped morphology. The cells expressed all key tight junctional proteins, such as occludin, claudin‐5, zonula occludens (ZO)‐1 and ZO‐2 at their cell‐to‐cell boundaries, and had low permeability to inulin across its monolayer. The cells also expressed various influx and efflux transporters and exhibited the functional expression of p‐glycoprotein. Furthermore, the TY08 cells grew and proliferated well under the permissive temperature and stopped growing under the non‐permissive temperature to serve as physiological ECs forming the BBB. Thus, conditionally immortalized TY08 cells retaining the in vivo BBB functions should facilitate analyses for determining the pathophysiology of various neurological diseases. J. Cell. Physiol. 225: 519–528, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Larochelle C  Alvarez JI  Prat A 《FEBS letters》2011,585(23):3770-3780
The presence of the blood-brain barrier (BBB) restricts the movement of soluble mediators and leukocytes from the periphery to the central nervous system (CNS). Leukocyte entry into the CNS is nonetheless an early event in multiple sclerosis (MS), an inflammatory disorder of the CNS. Whether BBB dysfunction precedes immune cell infiltration or is the consequence of perivascular leukocyte accumulation remains enigmatic, but leukocyte migration modifies BBB permeability. Immune cells of MS subjects express inflammatory cytokines, reactive oxygen species (ROS) and enzymes that can facilitate their migration to the CNS by influencing BBB function, either directly or indirectly. In this review, we describe how immune cells from the peripheral blood overcome the BBB and promote CNS inflammation in MS through BBB disruption.  相似文献   

5.
Central nervous system (CNS) disorders such as ischemic stroke, multiple sclerosis (MS) or Alzheimeŕs disease are characterized by the loss of blood-brain barrier (BBB) integrity. Here we demonstrate that the small tyrosine kinase inhibitor imatinib enhances BBB integrity in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (MS). Treatment was accompanied by decreased CNS inflammation and demyelination and especially reduced T-cell recruitment. This was supported by downregulation of the chemokine receptor (CCR) 2 in CNS and lymph nodes, and by modulation of the peripheral immune response towards an anti-inflammatory phenotype. Interestingly, imatinib ameliorated neuroinflammation, even when the treatment was initiated after the clinical manifestation of the disease. We have previously shown that imatinib reduces BBB disruption and stroke volume after experimentally induced ischemic stroke by targeting platelet-derived growth factor receptor -α (PDGFR-α) signaling. Here we demonstrate that PDGFR-α signaling is a central regulator of BBB integrity during neuroinflammation and therefore imatinib should be considered as a potentially effective treatment for MS.  相似文献   

6.
Multiple sclerosis (MS) is a common degenerative disorder of the central nervous system. The decreased frequency and dysfunction of Treg cells cause inflammation and disease progression. Ozone autohemotherapy can be used as a potential therapeutic approach to regulate the immune system responses and inflammation in MS. For this purpose, 20 relapsing-remitting multiple sclerosis patients were under treatment with ozone twice weekly for 6 months. The frequency of Treg cell, the expression levels of the Treg cell-related factors (FoxP3, IL-10, TGF-β, miR-17, miR-27, and miR-146A), and the secretion levels of IL-10 and TGF-β were assessed. We found a significant increase in the number of Treg cells, expression levels of FoxP3, miRNAs (miR-17 and miR-27), IL-10, and TGF-β factors in patients after oxygen–ozone (O2-O3) therapy compared to before treatment. In contrast, oxygen–ozone therapy notably decreased the expression level of miR-146a in treated patients. Interestingly, the secretion levels of both IL-10 and TGF-β cytokines were considerably increased in both serum and supernatant of cultured peripheral blood mononuclear cells in posttreatment condition compared to pretreatment condition. According to results, oxygen–ozone therapy raised the frequency of Treg cell and its relevant factors in treated MS patients. Oxygen–ozone therapy would contribute to improving the MS patients by elevating the Treg cell responses.  相似文献   

7.
Xia  Niange  Hua  Yingjie  Li  Jia  Chen  Yanyan  Li  Xueying  Lin  Jiahe  Xu  Huiqin  Xie  Chenglong  Wang  Xinshi 《Neurochemical research》2021,46(7):1674-1685

Blood–brain barrier (BBB) disruption has been recognized as an early hallmark of multiple sclerosis (MS) pathology. Our previous studies have shown that 2-(2-Benzofuranyl)-2-imidazoline (2-BFI) protected against experimental autoimmune encephalomyelitis (EAE), a classic animal model of MS. However, the potential effects of 2-BFI on BBB permeability have not yet been evaluated in the context of EAE. Herein, we aimed to investigate the effect of 2-BFI on BBB permeability in both an animal model and an in vitro BBB model using TNF-α to imitate the inflammatory damage to the BBB in MS. In the animal model, 2-BFI reduced neurological deficits and BBB permeability in EAE mice compared with saline treatment. The Western blot results indicated that 2-BFI not only alleviated the loss of the tight junction protein occludin caused by EAE but also inhibited the activation of the NR1-ERK signaling pathway. In an in vitro BBB model, 2-BFI (100 μM) alleviated the TNF-α-induced increase in permeability and reduction in expression of occludin in monolayer bEnd.3 cells. Similar protective effects were also observed after treatment with the NMDAR antagonist MK801. The Western blot results showed that the TNF-α-induced BBB breakdown and increase in NMDAR subunit 1 (NR1) levels and ERK phosphorylation could be blocked by pretreatment with 2-BFI or MK801. However, no additional effect was observed on BBB permeability or the expression of occludin and p-ERK after pretreatment with both 2-BFI and MK801. Our study indicates that 2-BFI alleviates the disruption of BBB in the context of inflammatory injury similar to that of MS by targeting NMDAR1, as well as by likely activating the subsequent ERK signaling pathway. These results provide further evidence for 2-BFI as a potential drug for the treatment of MS.

  相似文献   

8.
Coronary artery disease (CAD) is a well-known pathological condition that is characterized by high morbidity and mortality. The main pathological manifestation of CAD is myocardial injury due to ischemia–reperfusion (I–R). Currently, no efficacious treatment of protecting the heart against myocardial I–R exists. Hence, it is necessary to discover or develop novel strategies to prevent myocardial-reperfusion injury to improve clinical outcomes in patients with CAD. A large body of experimental evidence supports cardioprotective properties of curcumin and the ability of this phytochemical to modify some cardiovascular risk factors. However, the detailed effects of curcumin in myocardial I–R injury are still unclear and there is a lack of evidence concerning which curcumin regimen may be ideal for myocardial I–R injury. This paper presents a brief review of the pathophysiology of myocardial I–R injury and the mechanisms of action of curcumin in reducing myocardial I–R injury.  相似文献   

9.
Curcumin and nano-curcumin both exhibit neuroprotective effects in early brain injury (EBI) after experimental subarachnoid hemorrhage (SAH). However, the mechanism that whether curcumin and its nanoparticles affect the blood–brain barrier (BBB) following SAH remains unclear. This study investigated the effect of curcumin and the poly(lactide-co-glycolide) (PLGA)-encapsulated curcumin nanoparticles (Cur-NPs) on BBB disruption and evaluated the possible mechanism underlying BBB dysfunction in EBI using the endovascular perforation rat SAH model. The results indicated that Cur-NPs showed enhanced therapeutic effects than that of curcumin in improving neurological function, reducing brain water content, and Evans blue dye extravasation after SAH. Mechanically, Cur-NPs attenuated BBB dysfunction after SAH by preventing the disruption of tight junction protein (ZO-1, occludin, and claudin-5). Cur-NPs also up-regulated glutamate transporter-1 and attenuated glutamate concentration of cerebrospinal fluid following SAH. Moreover, inhibition of inflammatory response and microglia activation both contributed to Cur-NPs’ protective effects. Additionally, Cur-NPs markedly suppressed SAH-mediated oxidative stress and eventually reversed SAH-induced cell apoptosis in rats. Our findings revealed that the strategy of using Cur-NPs could be a promising way in improving neurological function in EBI after experimental rat SAH.  相似文献   

10.
Numerous studies have highlighted the implications of the glycogen synthase kinase 3 (GSK-3) in several processes associated with Alzheimer’s disease (AD). Therefore, GSK-3 has become a crucial therapeutic target for the treatment of this neurodegenerative disorder. Hereby, we report the design and multistep synthesis of ethyl 4-oxo-pyrazolo[4,3-d][1–3]triazine-7-carboxylates and their biological evaluation as GSK-3 inhibitors. Molecular modelling studies allow us to develop this new scaffold optimising the chemical structure. Potential binding mode determination in the enzyme and the analysis of the key features in the catalytic site are also described. Furthermore, the ability of pyrazolotriazinones to cross the blood–brain barrier (BBB) was evaluated by passive diffusion and those who showed great GSK-3 inhibition and permeation to the central nervous system (CNS) showed neuroprotective properties against tau hyperphosphorylation in a cell-based model. These new brain permeable pyrazolotriazinones may be used for key in vivo studies and may be considered as new leads for further optimisation for the treatment of AD.  相似文献   

11.
Blood–brain barrier (BBB) permeation remains, within the optimization process of CNS drugs, a challenge for the medicinal chemist. In vitro tools are available for evaluating at an early stage the BBB permeation properties of drugs. Of particular interest is the in vitro model consisting of a mono‐layer of cocultured endothelial cells, in presence of astrocytes that allows the evaluation of trans‐endothelial permeability properties. This model is useful but presents some drawbacks and limitations. In addition it cannot be taken isolated from others pharmacokinetic parameters for optimizing in vivo BBB permeation properties. Illustrative examples of prototypic situations will be presented, including false positive or negative results, matched and mismatched relations between in vitro and in vivo results. As a conclusion, BBB permeation properties have to be linked to metabolic stability and oral absorption parameters for ideal optimization of CNS drugs.  相似文献   

12.
The blood–brain barrier (BBB) normally bars peripheral T lymphocytes from entering the cerebrum. Interestingly, activated T cells exist as infiltrates in the brains of Alzheimer’s disease (AD) patients, but little is known about the mechanisms involved. In this study, we observed significantly higher MHC class I expression in rat brain endothelial cells compared with controls following the induction of experimental AD models. An in vitro BBB model, which was constructed with human brain microvascular endothelial cells, was established to study the mechanisms underlying the transendothelial migration of T cells. Using in vitro studies, we demonstrated that secretion of TNF-α from Aβ1–42-treated BV2 microglia contributes to the elevated expression of MHC class I on the brain microvessel endothelium. Transmigration assays and adhesion assays confirmed that the upregulation of MHC class I molecules was associated with T cell transendothelial migration. MHC class I knock-down in HBMECs significantly attenuated the migratory and adhesive capability of the T cells. Interestingly, a TNF-α neutralizing antibody effectively blocked the transendothelial migration of T cells triggered by treatment with the supernatant from Aβ1–42-treated BV2 microglia. We propose that microglia-derived TNF-α upregulates MHC class I molecule expression on brain endothelial cells, which represents a mechanism of T cell migration into the brain. This study may provide a new insight into the potential pathomechanism of Alzheimer’s disease.  相似文献   

13.
Curcumin, a biphenyl compound derived from rhizome, is a powerful anti-cancer agent. Emodin is an active component isolated from the root and rhizome of Rheum palmatum that has been widely used in traditional Chinese medicine for the treatment of various diseases. Currently, there are no studies examining the effect of curcumin in combination with emodin on tumor cell growth. In this study, we report for the first time that combined curcumin and emodin administration synergistically inhibits proliferation (MTT assay), survival (flow cytometry), and invasion (transwell migration assay) of breast cancer cells. Synergism is determined by the Chou–Talalay method. Moreover, we demonstrate that miR-34a is upregulated by curcumin and emodin. This microRNA helps mediate the anti-tumor effects of curcumin and emodin by downregulating Bcl-2 and Bmi-1. Our results not only provide insight into the mechanism of synergy between curcumin and emodin in breast cancer cells, but also suggest a new and potentially useful approach for breast cancer therapy.  相似文献   

14.
Immunotherapies are a promising strategy for the treatment of neurological diseases such as Alzheimer's disease (AD), however, transport of antibodies to the brain is severely restricted by the blood–brain barrier (BBB). Furthermore, molecular transport at the BBB is altered in disease, which may affect the mechanism and quantity of therapeutic antibody transport. To better understand the transport of immunotherapies at the BBB in disease, an in vitro BBB model derived from human induced pluripotent stem cells (iPSCs) was used to investigate the endocytic uptake route of immunoglobulin G (IgG). In this model, uptake of fluorescently labeled IgGs is a saturable process. Inhibition of clathrin-mediated endocytosis, caveolar endocytosis, and macropinocytosis demonstrated that macropinocytosis is a major transport route for IgGs at the BBB. IgG uptake and transport were increased after the addition of stimuli to mimic AD (Aβ1–40 and Aβ1–42) and neuroinflammation (tumor necrosis factor-α and interleukin-6). Lastly, caveolar endocytosis increased in the AD model, which may be responsible for the increase in IgG uptake in disease. This study presents an iPSC-derived BBB model that responds to disease stimuli with physiologically relevant changes to molecular transport and can be used to understand fundamental questions about transport mechanisms of immunotherapies in health and neurodegenerative disease.  相似文献   

15.
Dynorphin A 1–17 (Dyn A 1–17) is an endogenous neuropeptide known to act at the kappa opioid receptor; it has been implicated in a number of neurological disorders, including neuropathic pain, stress, depression, and Alzheimer's and Parkinson's diseases. The investigation of Dyn A 1–17 metabolism at the blood–brain barrier (BBB) is important since the metabolites exhibit unique biological functions compared to the parent compound. In this work, Dyn A 1–6 is identified as a metabolite of Dyn A 1–17 in the presence of bovine brain microvessel endhothelial cells (BBMECs), using LC–MS/MS. The transport of Dyn A 1–6 at the BBB was examined using this in vitro cell culture model of the BBB. Furthermore, the permeation of the BBB by the low molecular weight permeability marker fluorescein was characterized in the presence and absences of Dyn A 1–6.  相似文献   

16.
Gastric cancer (GC) is one of the prevalent human malignancies and the third most common cause of cancer‐related death worldwide. The doxorubicin hydrochloride is one of the important chemotherapeutic anticancer agents, with a limited therapeutic efficacy for treatment of GC. Therefore, taking advantage of synergistic effects by strategies like combination therapy seems appropriate and promising in treatment of GC. The aim of this study was to investigate a novel method to enhance the therapeutic efficacy of doxorubicin (as a chemotherapeutic agent) by co‐administration of curcumin (as a bioactive herbal compound) in GC treatment. In the present study, the effects of curcumin, doxorubicin, and their combinations (Dox‐Cur) were evaluated on the viability, morphological features, tumor spheroid formation, migration, invasion, and apoptosis of gastric adenocarcinoma cell line (AGS). Moreover, expression levels of BAX, BCL‐2, and CASP9 genes were assessed among AGS cells treated with curcumin, doxorubicin, and Dox‐Cur. The obtained results showed that all of curcumin, doxorubicin, and Dox‐Cur treatments significantly decreased the viability, tumor spheroid formation, migration, and invasion in the GC model cells. Furthermore, apoptosis rates in AGS cells were increased in a concentration‐ and time‐dependent manner in all of the treatment groups. Moreover, the anticancer activity of the Dox‐Cur combination was significantly more than curcumin and doxorubicin treatments alone. According to the results, Dox‐Cur combination therapy exerts more profound apoptotic and anticancer effects on the AGS cell line than curcumin or doxorubicin monotherapy.  相似文献   

17.
Curcumin (diferuloylmethane), a biologically active ingredient derived from rhizome of the plant Curcuma longa, has potent anticancer properties as demonstrated in a plethora of human cancer cell lines/animal carcinogenesis model and also acts as a biological response modifier in various disorders. We have reported previously that dietary supplementation of curcumin suppresses renal ornithine decarboxylase (Okazaki et al. Biochim Biophys Acta 1740:357–366, 2005) and enhances activities of antioxidant and phase II metabolizing enzymes in mice (Iqbal et al. Pharmacol Toxicol 92:33–38, 2003) and also inhibits Fe-NTA-induced oxidative injury of lipids and DNA in vitro (Iqbal et al. Teratog Carcinog Mutagen 1:151–160, 2003). This study was designed to examine whether curcumin possess the potential to suppress the oxidative damage caused by kidney-specific carcinogen, Fe-NTA, in animals. In accord with previous report, at 1 h after Fe-NTA treatment (9.0 mg Fe/kg body weight intraperitoneally), a substantial increased formation of 4-hydroxy-2-nonenal (HNE)-modified protein adducts in renal proximal tubules of animals was observed. Likewise, the levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG) and protein reactive carbonyl, an indicator of protein oxidation, were also increased at 1 h after Fe-NTA treatment in the kidneys of animals. The prophylactic feeding of animals with 1.0% curcumin in diet for 4 weeks completely abolished the formation of (i) HNE-modified protein adducts, (ii) 8-OHdG, and (iii) protein reactive carbonyl in the kidneys of Fe-NTA-treated animals. Taken together, our results suggest that curcumin may afford substantial protection against oxidative damage caused by Fe-NTA, and these protective effects may be mediated via its antioxidant properties. These properties of curcumin strongly suggest that it could be used as a cancer chemopreventive agent.  相似文献   

18.
The cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients contains a 17 kDa glycoproteic factor with gliotoxic properties in vitro. In order to study the physiopathological role of this gliotoxic factor in vivo, we have injected a partially purified preparation and appropriate controls in rat CSF and investigated whether it induces cell death in the rat central nervous system (CNS), 10 days and 3 months after injection. We used the TUNEL assay in association with specific immunohistochemistry to characterize dying cells in the gliotoxic factor- treated rat CNS. At 10 days post-injection, TUNEL-positive cells were observed in the whole rat CNS. They were particularly numerous in the choroid plexus, ependymal epithelium, cerebral white matter, cerebral vascular endothelium, arachnoid spaces and less frequent in the gray matter of brain and spinal cord. The predominant type of TUNEL-positive cells observed at 10 days post-injection was astrocytes, in white matter, gray matter, occasionnally around damaged endothelial cells in periventricular and subpial spaces. Other TUNEL-positive cells were identified as oligodendrocytes by an oligodendrocyte specific RIP immunostaining, at 10 days post-treatment with the gliotoxic factor. Interestingly, demyelination and death of oligodendrocytes were more important 3 months post-injection: TUNEL-RIP positive oligodendrocytes were generally associated with multifocal demyelinating areas. Clearly, the 17 kDa gliotoxic factor injection in rat CSF triggers demyelination and may be used as a new animal model for MS. Also, our results suggest a new possible scenario for MS pathogenesis: death of oligodendrocytes and astrocytes, stimulated by the MS gliotoxic factor causes the breakdown of the blood-brain barrier (BBB) and the demyelinating cascade.  相似文献   

19.
20.
Reactive oxygen species (ROS) play an important role in various events underlying multiple sclerosis (MS) pathology. In the initial phase of lesion formation, ROS are known to mediate the transendothelial migration of monocytes and induce a dysfunction of the blood-brain barrier (BBB). In this study, we describe the beneficial effect of the antioxidant alpha-lipoic acid (LA) on these phenomena. In vivo, LA dose-dependently prevented the development of clinical signs in a rat model for MS, acute experimental allergic encephalomyelitis (EAE). Clinical improvement was coupled to a decrease in leukocyte infiltration into the CNS, in particular monocytes. Monocytes isolated from the circulation of LA-treated rats revealed a reduced migratory capacity to cross a monolayer of rat brain endothelial cells in vitro compared with monocytes isolated from untreated EAE controls. Using live cell imaging techniques, we visualized and quantitatively assessed that ROS are produced within minutes upon the interaction of monocytes with brain endothelium. Monocyte adhesion to an in vitro model of the BBB subsequently induced enhanced permeability, which could be inhibited by LA. Moreover, administration of exogenous ROS to brain endothelial cells induced cytoskeletal rearrangements, which was inhibited by LA. In conclusion, we show that LA has a protective effect on EAE development not only by affecting the migratory capacity of monocytes, but also by stabilization of the BBB, making LA an attractive therapeutic agent for the treatment of MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号