首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the magnitude of the obesity epidemic, the mechanisms that contribute to increases in fat mass and to differences in fat depots are still poorly understood. Prostanoids have been proposed as potent adipogenic hormones, e.g. metabolites of prostaglandin J2 (PGJ2) bind and activate PPARγ. We hypothesize that an altered expression of enzymes in PGJ2 synthesis may represent a novel pathogenic mechanism in human obesity. We characterized adipose depot-specific expression of enzymes in PGJ2 synthesis, prostaglandin transporter and PPARγ isoforms. Paired omental and subcutaneous adipose tissue samples were obtained from 26 women undergoing elective abdominal surgery and gene expression examined in whole tissue and cultured preadipocytes using an Affymetrix cDNA microarray technique and validated with quantitative real-time PCR. All enzymes involved in prostaglandin synthesis were expressed in both adipose tissues. Expression of prostaglandin synthase-1 (PGHS1), prostaglandin D synthase (PTGDS), human prostaglandin transporter (hPGT) and PPARγ2 was higher in OM adipose tissue compared to SC, whereas 17β-hydroxysteroid dehydrogenase 5 (AKR1C3) showed predominance in SC adipose tissue. In SC adipose tissue, PGHS1 mRNA expression increased with BMI. The differential, depot-specific expression of key enzymes involved in transport, synthesis and metabolism of prostaglandins may have an important impact upon fat cell biology and may help to explain some of the observed depot-specific differences. In addition, the positive correlation between PGHS1 and BMI offers the novel hypothesis that the regulation of PG synthesis may have a role in determining fat distribution in human obesity.  相似文献   

2.
3.
Adult oligodendrocyte precursor cells (OPCs) are located adjacent to demyelinated lesion and contribute to myelin repair. The crucial step in remyelination is the migration of OPCs to the demyelinated area; however, the mechanism of OPC migration remains to be fully elucidated. Here we show that prostacyclin (prostaglandin I2, PGI2) promotes OPC migration, thereby promoting remyelination and functional recovery in mice after demyelination induced by injecting lysophosphatidylcholine (LPC) into the spinal cord. Prostacyclin analogs enhanced OPC migration via a protein kinase A (PKA)-dependent mechanism, and prostacyclin synthase expression was increased in the spinal cord after LPC injection. Notably, pharmacological inhibition of prostacyclin receptor (IP receptor) impaired remyelination and motor recovery, whereas the administration of a prostacyclin analog promoted remyelination and motor recovery after LPC injection. Our results suggest that prostacyclin could be a key molecule for facilitating the migration of OPCs that are essential for repairing demyelinated areas, and it may be useful in treating disorders characterized by demyelination.  相似文献   

4.
Inflammation of adipose tissue induces metabolic derangements associated with obesity. Thus, determining ways to control or inhibit inflammation in adipose tissue is of clinical interest. The present study tested the hypothesis that in mouse adipose tissue, endogenous prostaglandin E2 (PGE2) negatively regulates inflammation via activation of prostaglandin E receptor 4 (EP4). PGE2 (5–500nM) attenuated lipopolysaccharide-induced mRNA and protein expression of chemokines, including interferon-γ-inducible protein 10 and macrophage-inflammatory protein-1α in mouse adipose tissue. A selective EP4 antagonist (L161,982) reversed, and two structurally different selective EP4 agonists [CAY10580 and CAY10598] mimicked these actions of PGE2. Adipose tissue derived from EP4-deficient mice did not display this response. These findings establish the involvement of EP4 receptors in this anti-inflammatory response. Experiments performed on adipose tissue from high-fat-fed mice demonstrated EP4-dependent attenuation of chemokine production during diet-induced obesity. The anti-inflammatory actions of EP4 became more important on a high-fat diet, in that EP4 activation suppressed a greater variety of chemokines. Furthermore, adipose tissue and systemic inflammation was enhanced in high-fat-fed EP4-deficient mice compared with wild-type littermates, and in high-fat-fed untreated C57BL/6 mice compared with mice treated with EP4 agonist. These findings provide in vivo evidence that PGE2-EP4 signaling limits inflammation. In conclusion, PGE2, via activation of EP4 receptors, functions as an endogenous anti-inflammatory mediator in mouse adipose tissue, and targeting EP4 may mitigate adipose tissue inflammation.  相似文献   

5.
Prostacyclin as a potent effector of adipose-cell differentiation.   总被引:7,自引:0,他引:7       下载免费PDF全文
The terminal differentiation of Ob1771 pre-adipose cells induced by arachidonic acid in serum-free hormone-supplemented medium containing insulin, transferrin, growth hormone, tri-iodothyronine and fetuin (5F medium) was strongly diminished in the presence of inhibitors of prostaglandin synthesis, namely aspirin or indomethacin. Carbaprostacyclin, a stable analogue of prostacyclin (prostaglandin I2) known to be synthesized by pre-adipocytes and adipocytes, behaved as an efficient activator of cyclic AMP production and was able, when added to 5F medium, to mimic the adipogenic effect of arachidonic acid. Prostaglandins E2, F2 alpha and D2, unable to affect the cyclic AMP production, failed to substitute for carbaprostacyclin. However, prostaglandin F2 alpha, which is another metabolite of arachidonic acid in pre-adipose and adipose cells, able to promote inositol phospholipid breakdown and protein kinase C activation, potentiated the adipogenic effect of carbaprostacyclin. In addition, carbaprostacyclin enhanced both a limited proliferation and terminal differentiation of adipose precursor cells isolated from rodent and human adipose tissues maintained in primary culture. These results demonstrate the critical role of prostacyclin and prostaglandin F2 alpha on adipose conversion in vitro and suggest a paracrine/autocrine role of both prostanoids in the development of adipose tissue in vivo.  相似文献   

6.
The current article aims to summarize all possible spectrum of protein–protein interactions for thromboxane A synthase (CYP5A1) and prostacyclin synthase (CYP8A1). These enzymes metabolize the same substrate (prostaglandin H2) and can participate in cardiovascular, inflammatory, immune processes, and apoptosis modulation, as well as significantly influence the risk of cancers. Binary protein–protein and multiprotein complexes are of great importance in enzyme-regulating and signal-transduction pathways. However, protein partners of CYP5A1 and CYP8A1 are not yet fully identified, although both synthases are considered as prospective drug targets. At least 36 novel protein partners of CYP5A1 and CYP8A1 were revealed from different tissue types using an approach based on affinity isolation and mass spectrometry. Enrichment analysis showed that these proteins have different molecular functions: folding (refolding), unfolded protein and chaperon binding, protein transport (export/import), posttranslational modification, protein domain-specific binding, antioxidant activity, and glutathione homeostasis. A significant part of them, belonging to molecular chaperones, were common partners for CYP5A1 and CYP8A1, while other proteins were unique with the tissue-dependent distribution. New aspects of CYP5A1 and CYP8A1 interactomics and hetero-complex formation with different protein partners, including cytochrome P450s are discussed.  相似文献   

7.
Partially purified prostacyclin synthase from pig aorta converted the prostaglandin (PG) endoperoxide PGH2 to prostacyclin (PGI2), and PGH1 to 12-hydroxy-8,10-heptadecadienoic acid (HHD). Both reactions were inhibited by 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HP) in a dose-dependent fashion. However, the reactions PGH2 → PGI2 and PGH1 → HHD appeared to differ: substrate availability was rate limiting in the latter reaction, while the enzyme became rapidly saturated with PGH2 and a steady rate of prostacyclin formation was observed at higher substrate levels.  相似文献   

8.
Obesity induces white adipose tissue (WAT) dysfunction characterized by unremitting inflammation and fibrosis, impaired adaptive thermogenesis and increased lipolysis. Prostaglandins (PGs) are powerful lipid mediators that influence the homeostasis of several organs and tissues. The aim of the current study was to explore the regulatory actions of PGs in human omental WAT collected from obese patients undergoing laparoscopic bariatric surgery. In addition to adipocyte hypertrophy, obese WAT showed remarkable inflammation and total and pericellular fibrosis. In this tissue, a unique molecular signature characterized by altered expression of genes involved in inflammation, fibrosis and WAT browning was identified by microarray analysis. Targeted LC-MS/MS lipidomic analysis identified increased PGE2 levels in obese fat in the context of a remarkable COX-2 induction and in the absence of changes in the expression of terminal prostaglandin E synthases (i.e. mPGES-1, mPGES-2 and cPGES). IPA analysis established PGE2 as a common top regulator of the fibrogenic/inflammatory process present in this tissue. Exogenous addition of PGE2 significantly reduced the expression of fibrogenic genes in human WAT explants and significantly down-regulated Col1α1, Col1α2 and αSMA in differentiated 3T3 adipocytes exposed to TGF-β. In addition, PGE2 inhibited the expression of inflammatory genes (i.e. IL-6 and MCP-1) in WAT explants as well as in adipocytes challenged with LPS. PGE2 anti-inflammatory actions were confirmed by microarray analysis of human pre-adipocytes incubated with this prostanoid. Moreover, PGE2 induced expression of brown markers (UCP1 and PRDM16) in WAT and adipocytes, but not in pre-adipocytes, suggesting that PGE2 might induce the trans-differentiation of adipocytes towards beige/brite cells. Finally, PGE2 inhibited isoproterenol-induced adipocyte lipolysis. Taken together, these findings identify PGE2 as a regulator of the complex network of interactions driving uncontrolled inflammation and fibrosis and impaired adaptive thermogenesis and lipolysis in human obese visceral WAT.  相似文献   

9.
Prostacyclin (Prostaglandin I2) effects on the rat kidney adenylate cyclase-cyclic AMP system were examined. Prostaglandin I2 and prostaglandin E2, from 8 · 10?4 to 8 · ?7 M stimulated adenylate cyclase to a similar extent in cortex and outer medulla. In inner medulla, prostaglandin I2 was more effective than prostaglandin E2 at all concentrations tested. Both prostaglandin I2 and prostaglandin E2 were additive with antidiuretic hormone in outer and inner medulla. Prostaglandin I2 and prostaglandin E2 were not additive in any area of the kidney, indicating both were working by similar mechanisms. Prostaglandin I2 stimulation of adenylate cyclase correlated with its ability to increase renal slice cyclic AMP content. Prostaglandin I2 and prostaglandin E2 (1.5 · 10?4 M) elevated cyclic AMP content in cortex and outer medulla slices. In inner medulla, with Santoquin® (0.1 mM) present to suppress endogenous prostaglandin synthesis, prostaglandin I2 and prostaglandin E2 increased cyclic AMP content. 6-Ketoprostaglandin F, the stable metabolite of prostaglandin I2, did not increase adenylate cyclase activity or tissue cyclic AMP content. Thus, prostaglandin I2 activates renal adenylate cyclase. This suggests that the physiological actions of prostaglandin I2 may be mediated through the adenylate cyclase-cyclic AMP system.  相似文献   

10.
The effects of CGS 13080, a thromboxane (TXA2) synthase inhibitor, on airway responses to arachidonic acid (AA) were investigated in the anesthetized cat. Feline and human lung microsomal fraction exhibited prostaglandin I2 (PGI2, prostacyclin), and TXA2 synthase activities, and human platelet microsomal fractions exhibited TXA2 synthase activity. Cat and human lung microsomal fractions, but not human platelets, exhibited the presence of GSH-dependent PGE2 isomerase activity. CGS 13080 inhibited TXA2 synthase activity in all three microsomal fractions in a concentration-dependent manner. The increases in transpulmonary pressure and lung resistance and decreases in dynamic compliance in response to AA were decreased significantly by CGS 13080. These data suggest that the bronchoconstrictor actions of AA are mediated in large part by the formation of TXA2. The data further indicate that cyclooxygenase products other than TXA2 are involved in the bronchoconstrictor response to AA since meclofenamate had greater inhibitory activity than did CGS 13080. Moreover, the effects of CGS 13080 were due to inhibition of TXA2 synthase rather than an effect on TXA2 receptors, since airway responses to the TXA2 mimic, U46619, were not altered. The present data show that CGS 13080 inhibits TXA2 synthase activity without altering cyclooxygenase, PGI2 synthase, or GSH-dependent PGE2 isomerase activities. The data further indicate that in vivo administration of CGS 13080 may selectively increase PGI2 synthase activity.  相似文献   

11.
Objective: To investigate in prepubertal children whether physical fitness and/or physical activity are: 1) associated with insulin secretion and sensitivity and 2) account for racial differences in insulin secretion and sensitivity. Research Methods and Procedures: Subjects included 34 African American and 34 white nondiabetic children aged 5 to 11 years. Data were divided into two sets according to the availability of VO2max and physical activity data. Body composition was measured by dual‐energy X‐ray absorptiometry. Subcutaneous abdominal adipose tissue and intra‐abdominal adipose tissue were examined by computed tomography. Insulin sensitivity (SI) and acute insulin response (AIR) were determined by a frequently sampled intravenous glucose tolerance test. An all‐out, progressive treadmill exercise test was used for measuring VO2max. Physical activity data were collected by questionnaire. Results: African American children had lower SI and higher AIR than white children, after adjusting for total body fat mass. African Americans reported higher levels of physical activity (hours/wk) than whites, but had a lower VO2max. In multiple linear regression analysis, hours/wk of activity and hours/wk of vigorous activity, but not moderate activity, were independently related to SI and AIR after adjusting for race, total body fat mass or fat distribution, and total lean tissue mass. VO2max was not related to AIR, and was inversely related to SI, after adjusting for body composition. Race remained significantly associated with both SI and AIR, even after adjusting for body composition, fat distribution, and hours/wk of activity or hours/wk of vigorous activity. Discussion: In summary, overall physical activity and, especially, vigorous activity were associated with insulin secretion and sensitivity. However, neither physical activity nor VO2max explained the racial difference in insulin secretion (higher in African Americans) and sensitivity (lower in African Americans). Thus, racial (African American to white) differences in aspects of insulin action seem to be due to factors other than body composition, fat distribution, cardiovascular fitness, and amount of physical activity.  相似文献   

12.
The effects of prostaglandins (PGs) F, I2, F, and E2, together with acetylsalicylic acid (ASA) and quinidine were compared on arrhythmias following ligation of the left anterior descending coronary artery in anesthetized rats. An objective method of assessing arrhythmias based on the severity and duration of a sudden fall in blood pressure (BP) was used together with changes in the electrocardiogram (ECG) to quantify the data. When infused at 2 mcg/kg/min pre-ligation, PGs F and I2 increased the severity of the arrhythmias while F and E2 decreased the severity. Only the results with PGE2 were statistically significant. The most effective PG, E2, produced a 69 per cent decrease in arrhythmic score compared to a 93 per cent decrease with quinidine. ASA produced a non statistically significant 43 per cent decrease in arrhythmic score. PGE2 had no significant effect when infused post-ligation. None of the PGs had any marked effect on maximum following frequency in in vivo rat heart when infused 1–10 mcg/kg/min. These data indicate that PGs show marked specificity depending on the prostaglandin in their action on early ischemic arrhythmias. The site of PG antiarrhythmic activity may be in the occluded zone, and the antiarrhythmic action of PGs cannot be explained by their effects on electrical refractoriness in the heart.  相似文献   

13.
In a previous paper we reported that arachidonic acid (20:4(n − 6)) strongly enhances the endothelial cell synthesis of prostaglandin I3 (PGI3) from eicosapentaenoic acid (20:5(n − 3)), in stimulating the cyclooxygenase rather than the prostacyclin synthase (Bordet et al. (1986) Biochem. Biophys. Res. Commun. 135, 403–410). In the present study, endothelial cell monolayers were co-incubated with exogenous 20:5(n − 3) or docosatetraenoic acid (22:4(n − 6)), and n − 6 lipoxygenase products of 20:4(n − 6) or linoleic acid (18:2(n − 6)), namely 15-HPETE and 13-HPOD, respectively. Prostaglandins or dihomoprostaglandins were then measured by gas chromatography-mass spectrometry. Both hydroperoxides, up to 20 μM, stimulated the cyclooxygenation of 20:5(n − 3) and 22:4(n − 6), in particular the formation of PGI3 and dihomo-PGI3, respectively. Higher concentrations inhibited prostacyclin synthase. In contrast, the reduced products of hydroperoxides, 15-HETE and 13-HOD, failed to stimulate these cyclooxygenations, 13-HPOD appeared more potent than 15-HPETE and the cyclooxygenation of 22:4(n − 6) seemed to require higher amounts of hydroperoxides to be efficiently metabolized than 20:5(n − 3). These data suggest that prostacyclin potential of endothelium might be enhanced by raising the peroxide tone.  相似文献   

14.
It has been suggested earlier that the increased bleeding tendency observed in patients with hepatic coma is due to prostaglandin I2. Various experimental studies have reported an increased prostaglandin I2-formation, an enhanced plasma factor activity and a prolonged synthesis in-vitro. However, the rate of degradation of prostaglandin I2 in plasma could be another determinant alterating the locally available biologically active substance but this has not been examined so far. Thus, we examined the half-life of synthetic prostaglandin I. in-vitro in plasma from 25 patients with terminal liver insufficiency in different stages of hepatic coma. In 8 healthy volunteers a 6 months follow up shoed no significant change. The half-life of prostaglandin I. in controls was 10.21 ± 2.70 minutes, no different from coma stage I. (10.16 ± 1.36 minutes), coma stage II (10.86 ± 2.24 minutes), coma stage III (10.95 ± 3.06 minutes) or coma stage IV (12.07 ± 2.88 minutes). However, a modest trend towards a prolongation and an increase in standard deviation with the coma stage can be noted. No influence of various drugs commonly used in these patients could be seen. It can thus be concluded that there is no important difference in degradation speed fo prostaglandin I2 in the plasma of patients with terminal liver insuffiency, which could account for the increased bleeding tendency.  相似文献   

15.
The aim of present study was to investigate the anti-obesity effect of Ilex paraguariensis extract and its molecular mechanism in rats rendered obese by a high-fat diet (HFD). I. paraguariensis extract supplementation significantly lowered body weight, visceral fat-pad weights, blood and hepatic lipid, glucose, insulin, and leptin levels of rats administered HFD. Feeding I. paraguariensis extract reversed the HFD-induced downregulation of the epididymal adipose tissue genes implicated in adipogenesis or thermogenesis, such as peroxisome proliferators’ activated receptor γ2, adipocyte fatty acid binding protein, sterol-regulatory-element-binding protein-1c, fatty acid synthase, HMG-CoA reductase, uncoupling protein 2, and uncoupling protein 3. Dietary supplementation with I. paraguariensis extract protected rats from the HFD-induced decreases in the phospho-AMP-activated protein kinase (AMPK)/AMPK and phospho-acetyl-CoA carboxylase (ACC)/ACC protein ratio related to fatty acid oxidation in the edipidymal adipose tissue. The present study reports that the I. paraguariensis extract can have a protective effect against a HFD-induced obesity in rats through an enhanced expression of uncoupling proteins and elevated AMPK phosphorylation in the visceral adipose tissue.  相似文献   

16.
Prostaglandin synthases: recent developments and a novel hypothesis   总被引:12,自引:0,他引:12  
Cells are continuously exposed to cues, which signal cell survival or death. Fine-tuning of these conflicting signals is essential for tissue development and homeostasis, and defective pathways are linked to many disease processes, especially cancer. It is well established that prostaglandins (PGs), as signalling molecules, are important regulators of cell proliferation, differentiation and apoptosis. PG production has been a focus of many researchers interested in the mechanisms of parturition. Previously, investigators have focussed on the committed step of PG biosynthesis, the conversion by prostaglandin H synthase (PGHS; also termed cyclo-oxygenase, COX) of arachidonic acid (AA) (substrate) to PGH2, the common precursor for biosynthesis of the various prostanoids. However, recently the genes encoding the terminal synthase enzymes involved in converting PGH2 to each of the bioactive PGs, including the major uterotonic PGs, PGE2 (PGE synthase) and PGF2alpha (PGF synthase), have been cloned and characterized. This review highlights how the regulation of the expression and balance of key enzymes can produce, from a single precursor, prostanoids with varied and often opposing effects.  相似文献   

17.
Glycogen synthase from bovine adipose tissue has been kinetically characterized. Glucose 6-phosphate increased enzyme activity 50-fold with an activation constant (A0.5) of 2.6 mm. Mg2+ reversibly decreased this A0.5 to 0.75 mm without changing the amount of stimulation by glucose 6-phosphate. Mg2+ did not alter the apparent Km for UDP-glucose (0.13 mm). The pH optimum was broad and centered at pH 7.6. The glucose 6-phosphate activation of the enzyme was reversible and competitively inhibited by ATP (Ki = 0.6 mm) and Pi(Ki = 2.0 mm). The use of exogenous sources of glycogen synthase and glycogen synthase phosphatase suggests that (i) adipose tissue glycogen synthase phosphatase activity in fed mature steers is low or undetectable, and (ii) endogenous bovine adipose tissue glycogen synthase can be activated to other glucose 6-phosphate-dependent forms by addition of adipose tissue extracts from fasted steers or fed rats.  相似文献   

18.
Effect of hormones on cyclic AMP levels in cultured human cells.   总被引:1,自引:0,他引:1  
Cultured cells derived from human adipose tissue grew more slowly and had significantly higher basal levels of cyclic AMP than cultured fibroblasts. Cyclic AMP levels in cultured adipose tissue cells were unaffected by epinephrine and were elevated 15-fold by prostaglandin E1 while fibroblast cyclic AMP levels were elevated 27-fold by epinephrine and 95-fold by prostaglandin E1. These results support the postulate that the cultured adipose tissue cell is a distinct cell type which may represent an adipocyte or preadipocyte in culture.  相似文献   

19.
Inhibitory effects of 3-hydroperoxy-3-methyl-2-phenyl-3H-indole(HPI) on prostaglandin endoperoxide synthase(EC 1.14.99.1) and prostaglandin I2(PGI2) synthetase were compared with those of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid, namely, 15-hydroperoxyarachidonic acid(15-HPAA) and tranylcypromine (TCP). Sheep seminal vesicle microsomes were used as a source of prostaglandin endoperoxide synthase and bovine aortic microsomes as that of PGI2 synthetase. 15-HPAA and HPI inhibited PGI2 synthetase with IC50s of 5 × 10?7 and 3.5 × 10?6 M, respectively, whereas neither compound had effect on prostaglandin endoperoxide synthase at the concentration inhibiting PGI2 synthetase by 90%. TCP was a weak(IC50 = 5 × 10?4M) PGI2 synthetase inhibitor with low specificity.  相似文献   

20.
Biosynthesis of prostaglandins in ob17 preadipose cells was studied in culture. Dihomo-γ-linolenic acid is exclusively converted to PGE1. Arachidonic acid behaves quantitatively as a more potent precursor, leading to the synthesis of PGE2 and 6-keto-PGF (stable product of prostacyclin). In all cases prostaglandin synthesis was confirmed directly by radioimmunoassay. This synthesis is maximal during the growth phase and decreases dramatically after confluence at a time where adipose conversion occurs, suggesting a possible relationship between both events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号