首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The study was designed to investigate the effect of retinol binding protein (RBP)-4 on the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, which mediate the effects of insulin in vascular endothelial cells. The effects of RBP4 on nitric oxide (NO) and insulin-stimulated endothelin-1 (ET-1) secretion and on phosphorylation (p) of Akt, endothelial NO synthetase (eNOS), and extracellular signal-regulated kinase (ERK)1/2 were investigated in bovine vascular aortic endothelial cells (BAECs). RBP4 showed an acute vasodilatatory effect on aortic rings of rats within a few minutes. In BAECs, RBP4-treatment for 5 min significantly increased NO production, but inhibited insulin-stimulated ET-1 secretion. RBP4-induced NO production was not inhibited by tetraacetoxymethylester (BAPTA-AM), an intracellular calcium chelator, but was completely abolished by wortmannin, a PI3K inhibitor. RBP4 significantly increased p-Akt and p-eNOS production, and significantly inhibited p-ERK1/2 production. Triciribine, an Akt inhibitor, and wortmannin significantly inhibited RBP4-induced p-Akt and p-eNOS production. Inhibition of Akt1 by small interfering RNA decreased p-eNOS production enhanced by RBP4 in human umbilical vein endothelial cells. In conclusion, RBP4 has a robust acute effect of enhancement of NO production via stimulation of part of the PI3K/Akt/eNOS pathway and inhibition of ERK1/2 phosphorylation and insulin-induced ET-1 secretion, probably in the MAPK pathway, which results in vasodilatation.  相似文献   

2.
Myocardial infarction (MI) leads to cardiac remodelling and heart failure. Cardiomyocyte apoptosis is considered a critical pathological phenomenon accompanying MI, but the pathogenesis mechanism remains to be explored. MicroRNAs (miRs), with the identity of negative regulator of gene expression, exist as an important contributor to apoptosis. During the experiment of this study, MI mice models were successfully established and sequencing data showed that the expression of miR-23a-5p was significantly enhanced during MI progression. Further steps were taken and it showed that apoptosis of cardiac cells weakened as miR-23a-5p was downregulated and on the contrary that apoptosis strengthened with the overexpression of miR-23a-5p. To explore its working mechanisms, bioinformatics analysis was conducted by referring to multi-databases to predict the targets of miR-23a-5p. Further analysis suggested that those downstream genes enriched in several pathways, especially in the PI3K/Akt singling pathway. Furthermore, it demonstrated that miR-23a-5p was negatively related to the phosphorylation of PI3K/Akt, which plays a critical role in triggering cell apoptosis during MI. Recilisib-activated PI3K/Akt singling pathway could restrain apoptosis from inducing miR-23a-5p overexpression, and Miltefosine-blocked PI3K/Akt singling pathway could restrict apoptosis from inhibiting miR-23a-5p reduction. In conclusion, these findings revealed the pivotal role of miR-23a-5p-PI3K/Akt axis in regulating apoptosis during MI, introducing this novel axis as a potential indicator to detect ischemic heart disease and it could be used for therapeutic intervention.  相似文献   

3.
4.
The early 4 region (E4) of the adenoviral vectors (AdE4(+)) prolongs human endothelial cell (EC) survival and alters the angiogenic response, although the mechanisms for the EC-specific, AdE4(+)-mediated effects remain unknown. We hypothesized that AdE4(+) modulates EC survival through activation of the vascular endothelial (VE)-cadherin/Akt pathway. Here, we showed that AdE4(+), but not AdE4(-) vectors, selectively stimulated phosphorylation of both Akt at Ser(473) and Src kinase in ECs. The phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 and wortmannin abrogated AdE4(+) induction of both phospho-Akt expression and prolonged EC survival. Regulation of phospho-Akt was found to be under the control of various factors, namely VE-cadherin activation, Src kinase, tyrosine kinase, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Downstream targets of Akt signaling resulted in glycogen synthase kinase-3alpha/beta phosphorylation, beta-catenin up-regulation, and caspase-3 suppression, all of which led to AdE4(+)-mediated EC survival. Furthermore, infection with AdE4(+) vectors increased the angiogenic potential of ECs by promoting EC migration and capillary tube formation in Matrigel plugs. This selective AdE4(+)-mediated enhanced motility of ECs was also blocked by PI3K inhibitors. Taken together, these results suggest that activation of the VE-cadherin/Akt pathway is critical for AdE4(+)-mediated survival of ECs and angiogenic potential.  相似文献   

5.
Cell-released microvesicles (MVs) represent a novel way of cell-to-cell communication. Previous evidence indicates that endothelial progenitor cells (EPCs)-derived MVs can modulate endothelial cell survival and proliferation. In this study, we evaluated whether EPC-MVs protect cardiomyocytes (CMs) against angiotensin II (Ang II)-induced hypertrophy and apoptosis. The H9c2 CMs were exposed to Ang II in the presence or absence of EPC-MVs. Cell viability, apoptosis, surface area and β-myosin heavy chain (β-MHC) expression were analyzed. Meanwhile, reactive oxygen species (ROS), serine/threonine kinase (Akt), endothelial nitric oxide synthase (eNOS), and their phosphorylated proteins (p-Akt, p-eNOS) were measured. Phosphatidylinositol-3-kinase (PI3K) and NOS inhibitors were used for pathway verification. The role of MV-carried RNAs in mediating these effects was also explored. Results showed 1) EPC-MVs were able to protect CMs against Ang II-induced changes in cell viability, apoptosis, surface area, β-MHC expression and ROS over-production; 2) The effects were accompanied with the up-regulation of Akt/p-Akt and its downstream eNOS/p-eNOS, and were abolished by PI3K inhibition or partially blocked by NOS inhibition; 3) Depletion of RNAs from EPC-MVs partially or totally eliminated the effects of EPC-MVs. Our data indicate that EPC-MVs protect CMs from hypertrophy and apoptosis through activating the PI3K/Akt/eNOS pathway via the RNAs carried by EPC-MVs.  相似文献   

6.
7.
Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. Although it has been known that hepatic stellate cells (HSCs) play critical roles in the development and progression of HCC, the molecular mechanism underlying crosstalk between HSCs and cancer cells still remains unclear. Here, we investigated the interactions between HSCs and cancer cells through an indirect co-culture system. The expressions of cellular and exosomal miR-148a-3p were evaluated by quantitative real-time PCR. Cell counting kit-8 was used for evaluating cell growth in vitro. Cell migration and invasion ability were evaluated by wound-healing and Transwell assays. Western blot, quantitative real-time PCR and Luciferase reporter assay were performed to determine the target gene of miR-148a-3p. A xenograft liver cancer model was established to study the function of exosomal miR-148a-3p in vivo.We found that miR-148a-3p was downregulated in co-cultured HSCs and overexpression of miR-148a-3p in HSCs impaired the proliferation and invasiveness of HCC both in vitro and in vivo. Moreover, further study showed that the miR-148a-3p was also downexpressed in HSCs-derived exosomes, and increased HSCs-derived exosomal miR-148a-3p suppressed HCC tumorigenesis through ITGA5/PI3K/Akt pathway. In conclusion, our study demonstrated that exosome-depleted miR-148a-3p derived from activated HSCs accelerates HCC progression through ITGA5/PI3K/Akt axis.  相似文献   

8.
MARCH5 is a critical regulator of mitochondrial dynamics, apoptosis and mitophagy. However, its role in cardiovascular system remains poorly understood. This study aimed to investigate the role of MARCH5 in endothelial cell (ECs) injury and the involvement of the Akt/eNOS signalling pathway in this process. Rat models of myocardial infarction (MI) and human cardiac microvascular endothelial cells (HCMECs) exposed to hypoxia (1% O2) were used in this study. MARCH5 expression was significantly reduced in ECs of MI hearts and ECs exposed to hypoxia. Hypoxia inhibited the proliferation, migration and tube formation of ECs, and these effects were aggravated by knockdown of MARCH5 but antagonized by overexpressed MARCH5. Overexpression of MARCH5 increased nitric oxide (NO) content, p-eNOS and p-Akt, while MARCH5 knockdown exerted the opposite effects. The protective effects mediated by MARCH5 overexpression on ECs could be inhibited by eNOS inhibitor L-NAME and Akt inhibitor LY294002. In conclusion, these results indicated that MARCH5 acts as a protective factor in ischaemia/hypoxia-induced ECs injury partially through Akt/eNOS pathway.  相似文献   

9.
目的:研究miR-125b-5p对人血管瘤内皮细胞HemECs增殖、凋亡的影响.方法:RT-qPCR检测人血管瘤内皮细胞HemECs及其旁系组织细胞中miR-125b-5p与MCL-1 mRNA的表达;选取HemECs细胞分为对照组、miR-NC 组、miR-125b-5p mimic 组、miR-125b-5p in...  相似文献   

10.
Lnk, with APS and SH2-B (Src homology 2-B), belongs to a family of SH2-containing proteins with potential adaptor functions. Lnk regulates growth factor and cytokine receptor-mediated pathways implicated in lymphoid, myeloid, and platelet homeostasis. We have previously shown that Lnk is expressed and up-regulated in vascular endothelial cells (ECs) in response to tumor necrosis factor-alpha (TNFalpha). In this study, we have shown that, in ECs, Lnk down-regulates the expression, at both mRNA and protein levels, of the proinflammatory molecules VCAM-1 and E-selectin induced by TNFalpha. Mechanistically, our data indicated that, in response to TNFalpha, NFkappaB/p65 phosphorylation and translocation as well as IkappaBalpha phosphorylation and degradation were unchanged, suggesting that Lnk does not modulate NFkappaB activity. However, Lnk activates phosphatidylinositol 3-kinase (PI3K) as reflected by Akt phosphorylation. Our results identify endothelial nitric-oxide synthase as a downstream target of Lnk-mediated activation of the PI3K/Akt pathway and HO-1 as a new substrate of Akt. We found that sustained Lnk-mediated activation of PI3K in TNFalpha-activated ECs correlated with the inhibition of ERK1/2 phosphorylation, whereas phosphorylation of p38 and c-Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) was unchanged. ERK1/2 inhibition decreases VCAM-1 expression in TNFalpha-treated ECs. Collectively, our results identify the adaptor Lnk as a negative regulator in the TNFalpha-signaling pathway mediating ERK inhibition and suggest a role for Lnk in the interplay between PI3K and ERK triggered by TNFalpha in ECs.  相似文献   

11.
为研究miR-125a-5p在猪圆环病毒2型(porcine circovirus type 2,PCV2)诱导淋巴细胞凋亡中的作用及其作用机制,以PCV2感染PK-15细胞外泌体孵育的淋巴细胞为研究对象,采用流式细胞术、蛋白质免疫印迹试验(Western blotting)和实时荧光定量PCR,检测淋巴细胞凋亡率及凋亡相关miRNA表达;合成miR-125a-5p模拟物和抑制物转染PK-15细胞,检测miR-125a-5p过表达或抑制表达后细胞凋亡率;采用生物信息学方法预测miR-125a-5p的靶基因,双荧光素酶报告基因检测miR-125a-5p对靶基因的调控;Western blotting检测外泌体孵育淋巴细胞的线粒体凋亡信号通路相关蛋白Bcl-2、Bax、细胞色素C和caspase-3的表达。结果显示,感染PCV2的PK-15细胞分泌的外泌体极显著提高淋巴细胞凋亡率,在一定浓度范围内呈剂量依赖性;与PCV2诱导细胞凋亡相关的miRNA中,miR-125a-5p表达量极显著升高,miR-125a-5p模拟物转染细胞后极显著提高细胞凋亡率;利用TargetScan预测发现,miR-125a-5p与Bcl-2 3''UTR区有结合位点,miR-125a-5p模拟物极显著抑制pmir-Bcl-2 3''UTR-WT荧光素酶活性,对pmir-Bcl-2 3''UTR-MuT的荧光素酶活性无明显改变;外泌体孵育的淋巴细胞Bcl-2表达量显著降低,Bax、细胞色素C的释放和caspase-3表达量显著升高,Bcl-2/Bax的比值极显著降低。这表明,PCV2通过外泌体诱导淋巴细胞上调miR-125a-5p的表达,进而抑制Bcl-2 mRNA和蛋白表达,激活淋巴细胞线粒体凋亡通路诱导细胞凋亡。  相似文献   

12.
MicroRNAs(miRNAs) 是一类在脂肪组织发育中发挥重要作用的小非编码RNA. 为探明miR-125a-5p在3T3-L1前体脂肪细胞中的作用,采用实时qPCR检测了miR-125a-5p在小鼠各组织及3T3-L1前体脂肪细胞分化过程中的表达|使用经化学修饰的miR-125a-5p模拟物agomir及抑制剂antagomir转染3T3-L1前体脂肪细胞,采用实时qPCR 和 Western印迹检测成脂标志基因Pparγ和aP2的表达,油红O染色观察脂肪细胞脂质积累. 结果显示,miR-125-5p在小鼠脂肪组织中高丰度表达,在3T3-L1前体脂肪细胞分化过程中表达下降.过表达miR-125a-5p,与对照组相比,成脂标志基因Pparγ和aP2在mRNA和蛋白质水平均明显下降|油红O染色及定量结果显示脂质积累减少. 抑制剂处理结果显示,Pparγ和aP2在mRNA和蛋白质水平均有不同程度上升,但油红O染色及定量结果差异不显著. 以上结果表明,miR-125a-5p在脂肪细胞分化中发挥负调控作用.  相似文献   

13.
Dysregulation of microRNAs is closely implicated in the initiation and progression of human cancers including acute myeloid leukemia (AML). Though miR-139-5p was reported to be a potent tumor suppressor in adult AML, its underlying molecular mechanism in AML remains to be further defined. Herein, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis were conducted to determine the expressions of miR-139-5p and tetraspanin3 (Tspan3) in AML patients and cells. Luciferase reporter assay, qRT-PCR, and Western blot analysis were carried out to detect the interaction between miR-139-5p and Tspan3. Cell proliferation, cell cycle distribution, invasion, and migration were evaluated by cell counting kit-8, flow cytometry, transwell invasion, and migration assays, respectively. Western blot analysis was conducted to determine phosphorylated-protein kinase B (Akt) and Akt levels. We found that a significant reduction in miR-139-5p expression and a prominent increase in Tspan3 expression were observed in AML patients and cells. Tspan3 was confirmed as a direct target of miR-139-5p and was negatively modulated by miR-139-5p. Rescue experiments showed that overexpression of miR-139-5p constrained cell proliferation, invasion and migration capabilities, and induced cell cycle arrest at the S phase in AML cells, which were partially reversed by Tspan3 overexpression. In addition, we found that miR-139-5p suppressed the phosphoinositide 3-kinase (PI3K)/Akt pathway in AML cells by targeting Tspan3. In conclusion, our study concluded that miR-139-5p suppressed the leukemogenesis in AML cells by targeting Tspan3 through inactivation of the PI3K/Akt pathway, providing a better understanding of AML progression.  相似文献   

14.
Circular RNAs (circRNAs) has been shown to play an important role in the progression of various cancers. However, the function and underlying mechanisms of circRNAs affecting chemotherapy resistance in esophageal squamous cell carcinoma (ESCC) remain largely unknown. In this study, we used gefitinib-resistant (GR) ESCC cells to investigate the function of circPSMC3 and clarify the underlying mechanism in chemotherapy resistance in ESCC. The results suggested that circPSMC3 expression was downregulated, but miR-10a-5p was upregulated in ESCC tissues and cells, as well as in GR ESCC cells. CircPSMC3 overexpression increased the sensitivity of ESCC cells to gefitinib, as indicated by reduced half maximal inhibitory concentration value, increased apoptosis rate and cleaved caspase-3 protein expression. CircPSMC3 directly interacted with miR-10a-5p and inhibited the expression of miR-10a-5p. Phosphatase and tensin homolog (PTEN) was a direct target of miR-10a-5p and circPSMC3 promoted PTEN expression via decreasing miR-10a-5p level. Moreover, the effect of circPSMC3 on resistance of GR ESCC cells to gefitinib was remarkably reduced by restoration of miR-10a-5p and downregultion of PTEN. Taken together, these observations suggested that upregulation of circPSMC3 overcame resistance of GR ESCC cells to gefitinib by modulating the miR-10a-5p/PTEN axis, which provide a new therapeutic strategy for overcoming gefitinib resistance in ESCC.  相似文献   

15.
Progression of prostate cancer is facilitated by growth factors that activate critical signaling cascades thereby promote prostate cancer cell growth, survival, and migration. To investigate the effect of quercetin on insulin-like growth factor signaling and apoptosis in androgen independent prostate cancer cells (PC-3), IGF-IR, PI-3K, p-Akt, Akt, cyclin D1, Bad, cytochrome c, PARP, caspases-9 and 10 protein levels were assessed by western blot analysis. Mitochondrial membrane potency was detected by rhodamine-123 staining. Quercetin induced caspase-3 activity assay was performed for activation of apoptosis. Further, RT-PCR was also performed for Bad, IGF-I, II, IR, and IGFBP-3 mRNA expression. Quercetin significantly increases the proapoptotic mRNA levels of Bad, IGFBP-3 and protein levels of Bad, cytochrome C, cleaved caspase-9, caspase-10, cleaved PARP and caspase-3 activity in PC-3 cells. IGF-IRβ, PI3K, p-Akt, and cyclin D1 protein expression and mRNA levels of IGF-I, II and IGF-IR were decreased significantly. Further, treatment with PI3K inhibitor (LY294002) and quercetin showed decreased p-Akt levels. Apoptosis is confirmed by loss of mitochondrial membrane potential in quercetin treated PC-3 cells. This study suggests that quercetin decreases the survival of androgen independent prostate cancer cells by modulating the expression of insulin-like growth factors (IGF) system components, signaling molecules and induces apoptosis, which could be very useful for the androgen independent prostate cancer treatment.  相似文献   

16.
miR-125a-5p可负性调节GAB2表达,抑制胶质瘤细胞的侵袭和转移。本研究旨在证明miR-125a-5p抑癌作用的普遍性,即miR-125a-5p是否可通过靶向抑制GAB2抑制乳腺癌细胞的迁移。荧光素酶实验结果显示,miR-125a-5p可特异识别GAB2的3′-UTR,抑制报告酶的表达。荧光定量PCR结果揭示,与正常乳腺上皮细胞MCF-10A比较,miR-125a-5p在乳腺癌细胞MDA231和MCF-7中的表达明显降低;与迁移能力相对较低的MCF-7细胞比较,miR-125a-5p在迁移能力较高的MDA231细胞中的表达量更低。Western 印迹结果证明,与空载体(对照)和anti-miR125a 5p转染细胞比较,转染miR-125a-5p明显抑制GAB2蛋白在乳腺癌细胞中的表达。Transwell结果显示,与空载体转染的对照细胞比较,转染miR-125a-5p的乳腺癌细胞穿过基质胶的细胞数明显减少;相反,转染anti-miR125a-5p的细胞穿过基质胶的细胞数却明显增多。上述结果提示,miR-125a-5p在正常的乳腺细胞中高表达,而在乳腺癌细胞中低表达,其表达水平与癌细胞的迁移能力和GAB2表达呈反向关系。本研究结果还提示,miR-125a-5p通过靶向负调控GAB2抑制乳腺癌细胞的迁移能力。总之,本研究证明,miR-125a-5p在肿瘤中发挥抑癌作用。  相似文献   

17.
Liver fibrosis is the repair process of abnormal connective tissue hyperplasia after liver damage caused by different causes. Inhibition of PI3K/Akt signalling pathway can reduce the deposition of extracellular matrix, inhibit the proliferation of hepatic stellate cells (HSCs), and promote its apoptosis to achieve the purpose of therapy. This study aimed to investigate the effect of Idelalisib (PI3K inhibitor) on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. We used CCl4-induced liver fibrosis mouse model in vivo and TGF-β1-stimulated HSCs to evaluate the antifibrosis activity of Idelalisib. In vivo, Idelalisib significantly alleviated CCl4-induced liver damage, collagen deposition, and hydroxyproline accumulation in mice. Immunohistochemistry and Western blot results showed that Idelalisib could significantly inhibit the expressions of COL1 and α-SMA in a concentration-dependent manner. In cell experiments, Idelalisib significantly inhibited the expressions of COL1, SMA, and p-Smad3 in TGF-β-induced HSCs, thereby inhibiting HSC activation. Flow cytometry and Western blot results showed that Idelalisib significantly promoted TGFβ-induced apoptosis of HSCs after 48 h of administration, but had no significant effect after 24 h. Idelalisib promoted the apoptosis of activated HSCs by inhibiting the PI3K/Akt/FOXO3 signalling pathway. To further explore the mechanism by which Idelalisib inhibited PI3K, we predicted the miRNA targeting PI3K through the database and crossed it with the down-regulated miRNA reported in liver fibrosis mice in the past five years. Finally, we identified miR-124-3p and miR-143-3p. We then demonstrated that Idelalisib significantly promoted miR-124-3p and miR-142-3p in vitro and in vivo. Dual-luciferase report analysis showed that Idelalisib significantly inhibited luciferase activity but had no significant effect on the luc-MUT transfection assay. Finally, we demonstrated that Idelalisib reversed the effects of miR-124-3p inhibitor on the PI3K/Akt/FOXO3 asterisk pathway and caspase-3. Idelalisib has potential as a candidate drug for alleviating liver fibrosis.  相似文献   

18.
MicroRNAs (miRNAs) play an important role in drug resistance, and it is reported that miR-27a-3p regulated the sensitivity of cisplatin in breast cancer, lung cancer and ovarian cancer. However, the relationship between miR-27a-3p and chemosensitivity of cisplatin in hepatocellular carcinoma (HCC) was unclear, especially the underlying mechanism was unknown. In the present study, we analyzed miR-27a-3p expression levels in 372 tumor tissues and 49 adjacent tissues in HCC samples from TCGA database, and found that the miR-27a-3p was down-regulated in HCC tissues. The level of miR-27a-3p was associated with metastasis, Child–Pugh grade and race. MiR-27a-3p was regarded as a favorable prognosis indicator for HCC patients. Then, miR-27a-3p was overexpressed in HepG2 cell, and was knocked down in PLC cell. Next, we conducted a series of in vitro assays, including MTT, apoptosis and cell cycle assays to observe the biological changes. Further, inhibitor rate and apoptosis rate were detected with pre- and post-cisplatin treatment in HCC. The results showed that overexpression of miR-27a-3p repressed the cell viability, promoted apoptosis and increased the percentage of cells in G0/G1 phase. Importantly, overexpression of miR-27a-3p significantly increased the inhibitor rate and apoptosis rate with cisplatin intervention. Besides, we found that miR-27a-3p added cisplatin sensitivity potentially through regulating PI3K/Akt signaling pathway. Taken together, miR-27a-3p acted as a tumor suppressor gene in HCC cells, and it could be useful for modulating cisplatin sensitivity in chemotherapy.  相似文献   

19.
Many studies have demonstrated that apoptosis play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Neuroprotective effect of quercetin has been shown in a variety of brain injury models including ischemia/reperfusion. It is not clear whether BDNF?CTrkB?CPI3K/Akt signaling pathway mediates the neuroprotection of quercetin, though there has been some reports on the quercetin increased brain-derived neurotrophic factor (BDNF) level in brain injury models. We therefore first examined the neurological function, infarct volume and cell apoptosis in quercetin treated middle cerebral artery occlusion (MCAO) rats. Then the protein expression of BDNF, cleaved caspase-3 and p-Akt were evaluated in either the absence or presence of PI3K inhibitor (LY294002) or tropomyosin receptor kinase B (TrkB) receptor antagonist (K252a) by immunohistochemistry staining and western blotting. Quercetin significantly improved neurological function, while it decreased the infarct volume and the number of TdT mediated dUTP nick end labeling positive cells in MCAO rats. The protein expression of BDNF, TrkB and p-Akt also increased in the quercetin treated rats. However, treatment with LY294002 or K252a reversed the quercetin-induced increase of BDNF and p-Akt proteins and decrease of cleaved caspase-3 protein in focal cerebral ischemia rats. These results demonstrate that quercetin can decrease cell apoptosis in the focal cerebral ischemia rat brain and the mechanism may be related to the activation of BDNF?CTrkB?CPI3K/Akt signaling pathway.  相似文献   

20.
Previous studies failed to elucidate the detailed mechanisms of anesthetic preconditioning as a protective approach against ischemic/reperfusion (I/R) injury in cells. The present study mainly centered on discovering the mechanisms of Sevoflurane (Sev) in preventing cardiomyocytes against I/R injury. Human cardiomyocyte AC16 cell line was used to simulate I/R injury based on a hypoxia/reperfusion (H/R) model. After Sev treatment, cell viability and apoptosis were detected by MTT assay and flow cytometry, respectively. Lactate dehydrogenase (LDH) content was measured using an LDH Detection Kit. Relative mRNA and protein expressions of LINC01133, miR-30a-5p and apoptosis-related proteins were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. Target gene of miR-30a-5p and their potential binding sites were predicted using Starbase and confirmed by dual-luciferase reporter assay. Cell behaviors were assessed again after miR-30a-5p and LINC01133 transfection. Sev could improve cell viability, reduce LDH leakage, and down-regulate the expressions of apoptosis-related proteins (Bax, cleaved caspase-3 and cleaved caspase-9) and LINC01133 as well as up-regulate miR-30a-5p and Bcl-2 expressions in H/R cells. MiR-30a-5p was the target of LINC01133, and up-regulating miR-30a-5p enhanced the effects of Sev in H/R cells, with a suppression on H/R-induced activation of the p53 signaling pathway. However, up-regulating LINC01133 reversed the enhancing effects of miR-30a-5p on Sev pretreatment in H/R cells. Sev could protect cardiomyocytes against H/R injury through the miR-30a-5p/LINC01133 axis, which may provide a possible therapeutic method for curing cardiovascular I/R injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号