首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
For more than a decade, Wnt signaling pathways have been the focus of intense research activity in bone biology laboratories because of their importance in skeletal development, bone mass maintenance, and therapeutic potential for regenerative medicine. It is evident that even subtle alterations in the intensity, amplitude, location, and duration of Wnt signaling pathways affects skeletal development, as well as bone remodeling, regeneration, and repair during a lifespan. Here we review recent advances and discrepancies in how Wnt/Lrp5 signaling regulates osteoblasts and osteocytes, introduce new players in Wnt signaling pathways that have important roles in bone development, discuss emerging areas such as the role of Wnt signaling in osteoclastogenesis, and summarize progress made in translating basic studies to clinical therapeutics and diagnostics centered around inhibiting Wnt pathway antagonists, such as sclerostin, Dkk1 and Sfrp1. Emphasis is placed on the plethora of genetic studies in mouse models and genome wide association studies that reveal the requirement for and crucial roles of Wnt pathway components during skeletal development and disease.  相似文献   

3.
Both the Wnt/beta-catenin and Ihh signaling pathways play essential roles in crucial aspects of endochondral ossification: osteoblast differentiation, chondrocyte proliferation and hypertrophy. To understand the genetic interaction between these two signaling pathways, we have inactivated the beta-catenin gene and upregulated Ihh signaling simultaneously in the same cells during endochondral skeletal development using beta-catenin and patched 1 floxed alleles. We uncovered previously unexpected roles of Ihh signaling in synovial joint formation and the essential function of Wnt/beta-catenin signaling in regulating chondrocyte survival. More importantly, we found that Wnt and Ihh signaling interact with each other in distinct ways to control osteoblast differentiation, chondrocyte proliferation, hypertrophy, survival and synovial joint formation in the developing endochondral bone. Beta-catenin is required downstream of Ihh signaling and osterix expression for osteoblast differentiation. But in chondrocyte survival, beta-catenin is required upstream of Ihh signaling to inhibit chondrocyte apoptosis. In addition, Ihh signaling can inhibit chondrocyte hypertrophy and synovial joint formation independently of beta-catenin. However, there is a strong synergistic interaction between Wnt/beta-catenin and Ihh signaling in regulating synovial joint formation.  相似文献   

4.
Signaling pathways like Wnt play a vital part in all aspects of skeletal development which include osteoblastogenesis and osteoclastogenesis. Inactivation of Wnt signaling pathway leads to bone-related disorders, whereas activation of Wnt signaling pathway can cure bone pathologies like osteoporosis. Certain microRNA(s) have been identified that commune with Wnt signaling molecules to regulate osteogenesis. In this study we reported the identification of miR-409-5p as a suppressor of osteogenesis by targeting Lrp-8 which is a positive effector of Wnt signaling. Our study showed that overexpressing miR-409-5p inhibits osteoblast differentiation whereas obstructing miR-409-5p expression by anti-miR-409 promotes osteoblast functions and matrix mineralization. Using tools like targetscan and 3′-UTR luciferase reporter assay, Lrp-8 was confirmed as a straight target of miR-409-5p. By over expressing miR-409-5p, a repression of canonical Wnt/β catenin signaling was observed. These observations were strengthened by the fact that silencing of miR-409-5p in ovariectomized estrogen deficient Balb/c mice restored the loss of trabecular bone microarchitecture and suppressed bone resorption. Thus, targeting miR-409-5p may be helpful in increasing bone density in conditions like post menopausal osteoporosis.  相似文献   

5.
6.
Wnt signaling is a hallmark of all embryonic development with multiple roles at multiple developmental time points. Wnt signaling is also important in the development of several organs, one of which is the inner ear, where it participates in otic specification, the formation of vestibular structures, and the development of the cochlea. In particular, we focus on Wnt signaling in the auditory organ, the cochlea. Attempting to dissect the multiple Wnt signaling pathways in the mammalian cochlea is a challenging task due to limited expression data, particularly at proliferating stages. To offer predictions about Wnt activity, we compare cochlear development with that of other biological systems such as Xenopus retina, brain, cancer cells and osteoblasts. Wnts are likely to regulate development through crosstalk with other signaling pathways, particularly Notch and FGF, leading to changes in the expression of Sox2 and proneural (pro-hair cell) genes. In this review we have consolidated the known signaling pathways in the cochlea with known developmental roles of Wnts from other systems to generate a potential timeline of cochlear development.  相似文献   

7.
Sclerostin is an important regulator of bone homeostasis and canonical Wnt signaling is a key regulator of osteogenesis. Strontium ranelate is a treatment for osteoporosis that has been shown to reduce fracture risk, in part, by increasing bone formation. Here we show that exposure of human osteoblasts in primary culture to strontium increased mineralization and decreased the expression of sclerostin, an osteocyte-specific secreted protein that acts as a negative regulator of bone formation by inhibiting canonical Wnt signaling. Strontium also activated, in an apparently separate process, an Akt-dependent signaling cascade via the calcium-sensing receptor that promoted the nuclear translocation of β-catenin. We propose that two discrete pathways linked to canonical Wnt signaling contribute to strontium-induced osteogenic effects in osteoblasts.  相似文献   

8.
MicroRNAs (miRNAs) regulate activities in living organisms through various signaling pathways and play important roles in the development and progression of osteoporosis. The balance between osteogenic and adipogenic differentiation of rBMSCs is closely related to the occurrence of osteoporosis. ERα regulates bone metabolism in various tissues. However, the correlation among ERα, miRNAs, and the differentiation of rBMSCs is still unclear. In this study, we used lentivirus transfection into rBMSCs to construct an ERα-deficient model, analyzed the differences in expressed miRNAs between control and ERα-deficient rBMSCs. The results revealed that the expression of 25 miRNAs were upregulated, 164 miRNAs were downregulated, and some of the regulated miRNAs such as miR-210-3p and miR-214-3p were related to osteogenic or adipogenic differentiation, as well as to particular signaling pathways. Next, we overexpressed miR-210-3p to evaluate its effects on the osteogenic and adipogenic differentiation of rBMSCs, and identified the relationship among miR-210-3p, Wnt signaling pathway, and the differentiation of rBMSCs. The results indicated that ERα-deficient inhibited osteogenic differentiation, promoted adipogenic differentiation, and regulated the expression of some miRNAs. Meanwhile, overexpression of miR-210-3p promoted osteogenic differentiation and inhibited adipogenic differentiation of rBMSCs, processes likely to be related to the Wnt signaling pathway. In conclusion, we identified a group of upregulated and downregulated miRNAs in ERα-deficient rBMSCs that might play a vital role in regulating osteogenic or adipogenic differentiation. One of these, miR-210-3p, inhibited osteogenic differentiation and promoted adipogenic differentiation correlated with the Wnt signaling pathway in ERα-deficient rBMSCs, providing new insight into the regulation of bone metabolism.  相似文献   

9.
The signaling molecule Wnt regulates bone homeostasis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Impairment of canonical Wnt signaling causes bone loss in arthritis and osteoporosis; however, it is unclear how noncanonical Wnt signaling regulates bone resorption. Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor (Ror) proteins. We showed that Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhanced osteoclastogenesis. Osteoblast-lineage cells expressed Wnt5a, whereas osteoclast precursors expressed Ror2. Mice deficient in either Wnt5a or Ror2, and those with either osteoclast precursor-specific Ror2 deficiency or osteoblast-lineage cell-specific Wnt5a deficiency showed impaired osteoclastogenesis. Wnt5a-Ror2 signals enhanced receptor activator of nuclear factor-κB (RANK) expression in osteoclast precursors by activating JNK and recruiting c-Jun on the promoter of the gene encoding RANK, thereby enhancing RANK ligand (RANKL)-induced osteoclastogenesis. A soluble form of Ror2 acted as a decoy receptor of Wnt5a and abrogated bone destruction in mouse arthritis models. Our results suggest that the Wnt5a-Ror2 pathway is crucial for osteoclastogenesis in physiological and pathological environments and represents a therapeutic target for bone diseases, including arthritis.  相似文献   

10.
Canonical Wnt signaling supports the formation and maintenance of stem and cancer stem cells. Recent studies have elucidated epigenetic mechanisms that control pluripotency and stemness, and allow a first assessment how embryonic and tissue stem cells are generated and maintained, and how Wnt signaling might be involved. The core of this review highlights the roles of Wnt signaling in stem and cancer stem cells of tissues such as skin, intestine and mammary gland. Lastly, we refer to the characterization of novel and powerful inhibitors of canonical Wnt signaling and describe attempts to bring these compounds into preclinical and clinical studies.  相似文献   

11.
SOST基因的表达调控   总被引:2,自引:0,他引:2  
秦龙娟  丁达霞  崔璐璐  黄青阳 《遗传》2013,35(8):939-947
硬化蛋白(Sclerostin, SOST)主要由骨细胞特异性表达, 是骨形成的负性调节因子。甲状旁腺激素和雌激素抑制SOST基因表达, 转录因子Osterix、Runx2和Mef2c促进SOST基因表达, 而转录因子Sirt1负调控SOST表达。此外, SOST基因表达还受DNA甲基化和microRNA等表观遗传学调控。SOST基因突变可引起骨硬缩症和Van Buchem病, 与骨质疏松症相关联。Wnt和BMP是骨代谢调节的两个重要信号途径, SOST可通过结合BMP的Ⅰ型或Ⅱ型受体和Wnt的共受体LRP5/6分别抑制BMP和Wnt信号途径来调控成骨细胞分化和骨形成。抑制SOST为骨质疏松症的治疗提供了新的途径。文章综述了SOST基因的结构、功能、表达调控、与人类疾病的关系、调节骨代谢的机制及其临床应用前景。  相似文献   

12.
Osteoporosis is a silent systemic disease that causes bone deterioration, and affects over 10 million people in the US alone. This study was undertaken to develop a potential stem cell therapy for osteoporosis. We have isolated and expanded human dental pulp-derived stem cells (DPSCs), characterized them, and confirmed their multipotential differentiation abilities. Stem cells often remain quiescent and require activation to differentiate and function. Herein, we show that ferutinin activates DPSCs by modulating the Wnt/β-catenin signaling pathway and key osteoblast-secreted proteins osteocalcin and collagen 1A1 both mRNA and protein levels. To confirm that ferutinin modulates the Wnt pathway, we inhibited glycogen synthase kinase 3 (GSK3) and found that protein expression patterns were similar to those found in ferutinin-treated DPSCs. To evaluate the role of ferutinin in epigenetic regulation of canonical Wnt signaling, the pathway molecules Wnt3a and Dvl3 were analyzed using chromatin immunoprecipitation (ChIP)-quantitative PCR approaches. We confirmed that active marks of both H3K9 acetylation and H3K4 trimethylation were significantly enhanced in the promoter sites of the WNT3A and DVL3 genes in DPSCs after addition of ferutinin. These data provide evidence that ferutinin activates and promotes osteogenic differentiation of DPSCs, and could be used as an inducer as a potentially effective stem cell therapy for osteoporosis.  相似文献   

13.
Distinct regions of the primitive streak (PS) have diverse potential to differentiate into several tissues, including the hematopoietic lineage originated from the posterior region of PS. Although various signaling pathways have been identified to promote the development of PS and its mesoderm derivatives, there is a large gap in our understanding of signaling pathways that regulate the hematopoietic fate of PS. Here, we defined the roles of Wnt, activin, and bone morphogenetic protein (BMP) signaling pathways in generating hematopoietic-fated PS from human pluripotent stem cells (hPSCs). We found that the synergistic balance of these signaling pathways was crucial for controlling the PS fate determination towards hematopoietic lineage via mesodermal progenitors. Although the induction of PS depends largely on the Wnt and activin signaling, the PS generated without BMP4 lacks the hematopoietic potential, indicating that the BMP signaling is necessary for the PS to acquire hematopoietic property. Appropriate levels of Wnt signaling is crucial for the development of PS and its specification to the hematopoietic lineage. Although the development of PS is less sensitive to activin or BMP signaling, the fate of PS to mesoderm progenitors and subsequent hematopoietic lineage is determined by appropriate levels of activin or BMP signaling. Collectively, our study demonstrates that Wnt, activin, and BMP signaling pathways play cooperative and distinct roles in regulating the fate determination of PS for hematopoietic development. Our understanding of the regulatory networks of hematopoietic-fated PS would provide important insights into early hematopoietic patterning and possible guidance for generating functional hematopoietic cells from hPSCs in vitro.  相似文献   

14.
15.
Extracellular binding proteins or antagonists are important factors that modulate ligands in the transforming growth factor (TGF‐β) family. While the interplay between antagonists and ligands are essential for developmental and normal cellular processes, their imbalance can lead to the pathology of several disease states. In particular, recent studies have implicated members of the differential screening‐selected gene in neuroblastoma (DAN) family in disease such as renal fibrosis, pulmonary arterial hypertension, and reactivation of metastatic cancer stem cells. DAN family members are known to inhibit the bone morphogenetic proteins (BMP) of the TGF‐β family. However, unlike other TGF‐β antagonist families, DAN family members have roles beyond ligand inhibition and can modulate Wnt and vascular endothelial growth factor (VEGF) signaling pathways. This review describes recent structural and functional advances that have expanded our understanding of DAN family proteins with regards to BMP inhibition and also highlights their emerging roles in the modulation of Wnt and VEGF signaling pathways.  相似文献   

16.
Wnt signaling through the canonical beta-catenin pathway plays essential roles in development and disease. Low-density-lipoprotein receptor-related proteins 5 and 6 (Lrp5 and Lrp6) in vertebrates, and their Drosophila ortholog Arrow, are single-span transmembrane proteins that are indispensable for Wnt/beta-catenin signaling, and are likely to act as Wnt co-receptors. This review highlights recent progress and unresolved issues in understanding the function and regulation of Arrow/Lrp5/Lrp6 in Wnt signaling. We discuss Arrow/Lrp5/Lrp6 interactions with Wnt and the Frizzled family of Wnt receptors, and with the intracellular beta-catenin degradation apparatus. We also discuss the regulation of Lrp5/Lrp6 by other extracellular ligands, and LRP5 mutations associated with familial osteoporosis and other disorders.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号