首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high morbidity and mortality, and have no specific therapy. Keratinocyte growth factor (KGF) is a critical factor for pulmonary epithelial repair and acts via the stimulation of epithelial cell proliferation. Mesenchymal stem cells (MSCs) have been proved as good therapeutic vectors. Thus, we hypothesized that MSC-based KGF gene therapy would have beneficial effects on lipopolysaccharide(LPS)-induced lung injury. After two hours of intratracheal LPS administration to induce lung injury, mice received saline, MSCs alone, empty vector-engineered MSCs (MSCs-vec) or KGF-engineered MSCs (MSCs-kgf) via the tail vein. The MSCs-kgf could be detected in the recipient lungs and the level of KGF expression significantly increased in the MSCs-kgf mice. The MSC-mediated administration of KGF not only improved pulmonary microvascular permeability but also mediated a down-regulation of proinflammatory responses (reducing IL-1β and TNF-α) and an up-regulation of anti-inflammatory responses (increasing cytokine IL-10). Furthermore, the total severity scores of lung injury were significantly reduced in the MSCs-kgf group compared with the other three groups. The underlying mechanism of the protective effect of KGF on ALI may be attributed to the promotion of type II lung epithelial cell proliferation and the enhancement of surfactant synthesis. These findings suggest that MSCs-based KGF gene therapy may be a promising strategy for ALI treatment.  相似文献   

2.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is the clinical syndrome of persistent lung inflammation caused by various direct and indirect stimuli. Despite advances in the understanding of disease pathogenesis, few therapeutic have emerged for ALI/ARDS. Thus, in the present study we evaluated the therapeutic potential of ethyl gallate (EG), a plant flavanoid in the context of ALI using in vivo (BALB/c) and in vitro models (human monocytes). Our in vivo data supports the view that EG alleviates inflammatory condition in ALI as significant reduction in BALF neutrophils, ROS, proinflammatory cytokines and albumin levels were observed with the single i.p of EG post LPS exposure. Also, histochemical analysis of mice lung tissue demonstrated that EG restored LPS stimulated cellular influx inside the lung airspaces. Unraveling the mechanism of action, our RT-PCR and western blot analysis suggest that enhanced expression of HO-1 underlies the protective effect of EG on ROS level in mice lung tissue. Induction of HO-1 in turn appears to be mediated by Nrf2 nuclear translocation and consequent activation and ablation of Nrf2 activity through siRNA notably abrogated the EG induced protective effect in LPS induced human monocytes. Furthermore, our results indicate that EG generated moderate amounts of H2O2 could induce Nrf2 translocation in the in vitro systems. However, given the insignificant amount of H2O2 recorded in the injected material in the in vivo system, additional mechanism for EG action could not be excluded. Nevertheless our results highlight the protective role of EG in ALI and provide the novel insight into its usefulness as a therapeutic tool for the treatment of ALI.  相似文献   

3.
Acute renal failure (ARF) and acute respiratory distress syndrome (ARDS) are still lethal diseases during sepsis, whereas heme oxygenase-1 (HO-1) elicits a host defense response to sepsis. Herein, we provide evidence that hepatocyte growth factor (HGF) prevents ARF and ARDS via enhanced induction of HO-1. Lipopolysaccharide (LPS)-treated mice manifested renal and pulmonary injuries similar to those observed in septic patients, while HGF enhanced the HO-1 induction in renal tubular cells and in lung macrophages. As a result, onsets of ARF and ARDS were blocked by HGF in septic mice. Notably, an HO-1 inhibitor (SnPP) diminished the protective effects of HGF on LPS-induced organ injuries. Furthermore, the inhibitory effect of HGF on up-regulation of interleukin-1β and interleukin-18 was largely restored by SnPP. This is the first report showing that “growth factor therapy” successfully inhibits both ARDS and ARF during endotoxemia, partially via HO-1-dependent suppression of hyper-cytokinemia.  相似文献   

4.
Protective effect of purinergic agonist ATPgammaS against acute lung injury   总被引:1,自引:0,他引:1  
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are major causes of acute respiratory failure associated with high morbidity and mortality. Although ALI/ARDS pathogenesis is only partly understood, pulmonary endothelium plays a major role by regulating lung fluid balance and pulmonary edema formation. Consequently, endothelium-targeted therapies may have beneficial effects in ALI/ARDS. Recently, attention has been given to the therapeutic potential of purinergic agonists and antagonists for the treatment of cardiovascular and pulmonary diseases. Extracellular purines (adenosine, ADP, and ATP) and pyrimidines (UDP and UTP) are important signaling molecules that mediate diverse biological effects via cell-surface P2Y receptors. We previously described ATP-induced endothelial cell (EC) barrier enhancement via a complex cell signaling and hypothesized endothelial purinoreceptors activation to exert anti-inflammatory barrier-protective effects. To test this hypothesis, we used a murine model of ALI induced by intratracheal administration of endotoxin/lipopolysaccharide (LPS) and cultured pulmonary EC. The nonhydrolyzed ATP analog ATPgammaS (50-100 muM final blood concentration) attenuated inflammatory response with decreased accumulation of cells (48%, P < 0.01) and proteins (57%, P < 0.01) in bronchoalveolar lavage and reduced neutrophil infiltration and extravasation of Evans blue albumin dye into lung tissue. In cell culture model, ATPgammaS inhibited junctional permeability induced by LPS. These findings suggest that purinergic receptor stimulation exerts a protective role against ALI by preserving integrity of endothelial cell-cell junctions.  相似文献   

5.
Susceptibility to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) varies greatly among patients in sepsis/septic shock. The genetic and biochemical reasons for the difference are not fully understood. G protein coupled receptor family C group 5 member A (GPRC5A), a retinoic acid target gene, is predominately expressed in the bronchioalveolar epithelium of lung. We hypothesized that Gprc5a is important in controlling the susceptibility to ALI or ARDS. In this study, we examined the susceptibility of wild-type and Gprc5a-knockout (ko) mice to induced ALI. Administration of endotoxin LPS induced an increased pulmonary edema and injury in Gprc5a-ko mice, compared to wild-type counterparts. Consistently, LPS administration induced higher levels of inflammatory cytokines (IL-1β and TNFα) and chemokine (KC) in Gprc5a-ko mouse lungs than in wild-type. The enhanced pulmonary inflammatory responses were associated with dysregulated NF-κB signaling in the bronchioalveolar epithelium of Gprc5a-ko mouse lungs. Importantly, selective inhibition of NF-κB through expression of the super-repressor IκBα in the bronchioalveolar epithelium of Gprc5a-ko mouse lungs alleviated the LPS-induced pulmonary injury, and inflammatory response. Thus, Gprc5a is critical for lung homeostasis, and Gprc5a deficiency confers the susceptibility to endotoxin-induced pulmonary edema and injury, mainly through NF-κB signaling in bronchioalveolar epithelium of lung.  相似文献   

6.
急性肺损伤(ALI)和急性呼吸窘迫综合征(ARDS)是常见的临床综合征,绝大多数ALI/ARDS患者需机械通气治疗,机械通气在提供可接受的肺部气体交换的同时治疗基础疾病,但机械通气本身也会引起肺部损伤,即机械通气性肺损伤(VILI)。而通过调整机械通气参数的设置,使用保护性通气策略可显著减低ALI/ARDS患者机械通气性肺损伤程度,从而减少肺部感染,缩短机械通气时间和住院时间,降低28天死亡率,明显改善ALI/ARDS患者的生存质量,起到最大程度地肺保护作用。本文从气道平台压,通气容积,呼气末正压等几个不同通气参数方面分别进行综述,讨论ALI/ARDS患者机械通气时使用保护性通气策略对于肺部损伤的影响。  相似文献   

7.
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a clinical complication caused by primary or secondary lung injury, as well as by systemic inflammation. Researches regarding molecular pathophysiology of ALI/ARDS are immerging with an ultimate aim towards developing prognostic molecular biomarkers and molecule-based therapy. However, the molecular mechanisms concerning ALI/ARDS are still not completely understood. The purpose of the present study was to identify a crucial role of CCN1 in inflammatory microenvironment during ALI/ARDS and focus on a potential communication between CCN1 and interleukin-6 (IL-6) in the airway epithelial cells. Our data illustrated that the expression levels of CCN1 and IL-6 in bronchoalveolar lavage fluid (BALF) in a lipopolysaccharide (LPS)-induced ALI mouse model were significantly elevated and the pulmonary expression of CCN1 was restricted to bronchial epithelial cells. Interestingly, both endogenous and exogenous CCN1 stimulated IL-6 production in vitro. Furthermore, LPS-induced IL-6 production in a bronchial epithelial cell line was blocked by CCN siRNA whereas CCN1 induced by LPS was sensitive to PI3K inhibition. Together, our data indicate a linear signal pathway, LPS-CCN1-IL-6, existing in bronchial epithelial cells after LPS exposure. This finding may represent an additional mechanism and a novel target for development of therapy and biomarker on ALI/ARDS.  相似文献   

8.
9.
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) are the leading causes of death in critical care. Despite extensive efforts in research and clinical medicine, mortality remains high in these diseases. Perfluorocarbon (PFC), a chemical compound known as liquid ventilation medium, is capable of dissolving large amounts of physiologically important gases (mainly oxygen and carbon dioxide). In this study we aimed to investigate the effect of intravenous infusion of PFC emulsion on lipopolysaccharide (LPS) induced ALI in rats and elucidate its mechanism of action. Forty two Wistar rats were randomly divided into three groups: 6 rats were treated with saline solution by intratracheal instillation (control group), 18 rats were treated with LPS by intratracheal instillation (LPS group) and the other 18 rats received PFC through femoral vein prior to LPS instillation (LPS+PFC group). The rats in the control group were sacrificed 6 hours later after saline instillation. At 2, 4 and 6 hours of exposure to LPS, 6 rats in the LPS group and 6 rats in LPS+PFC group were sacrificed at each time point. By analyzing pulmonary pathology, partial pressure of oxygen in the blood (PaO2) and lung wet-dry weight ratio (W/D) of each rat, we found that intravenous infusion of PFC significantly alleviated acute lung injury induced by LPS. Moreover, we showed that the expression of pulmonary myeloperoxidase (MPO), intercellular adhesion molecule-1 (ICAM-1) of endothelial cells and CD11b of polymorphonuclear neutrophils (PMN) induced by LPS were significantly decreased by PFC treatment in vivo. Our results indicate that intravenous infusion of PFC inhibits the infiltration of PMNs into lung tissue, which has been shown as the core pathogenesis of ALI/ARDS. Thus, our study provides a theoretical foundation for using intravenous infusion of PFC to prevent and treat ALI/ARDS in clinical practice.  相似文献   

10.
Adipose‐derived stromal cells (ADSCs) showed excellent capacity in regeneration and tissue protection. Low tidal volume ventilation (LVT) strategy demonstrates a therapeutic benefit on the treatment of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). This study, therefore, aimed to undertaken determine whether the combined LVT and ADSCs treatment exerts additional protection against lipopolysaccharide (LPS)‐induced ALI in rats. The animals were randomized into seven groups: Group I (control), Group II (instillation of LPS at 10 mg/kg intratracheally), Group III (LPS+LVT 6 ml/kg), Group IV (LPS+intravenous autologous 5 × 106 ADSCs which were pretreated with a scrambled small interfering RNA [siRNA] of keratinocyte growth factor [KGF] negative control), Group V (LPS+ADSCs which were pretreated with a scrambled siRNA of KGF, Group VI (LPS+LVT and ADSCs as in the Group IV), and Group VII (LPS+LVT and ADSCs as in the Group V). We found that levels of tumor necrosis factor‐α, transforming growth factor‐β1, and interleukin (IL)‐1β and IL‐6, the proinflammatory cytokines, were remarkably increased in LPS rats. Moreover, the expressions of ENaC, activity of Na, K‐ATPase, and alveolar fluid clearance (AFC) were obviously reduced by LPS‐induced ALI. The rats treated by ADSCs showed improved effects in all these changes of ALI and further enhanced by ADSCs combined with LVT treatment. Importantly, the treatment of ADSCs with siRNA‐mediated knockdown of KGF partially eliminated the therapeutic effects. In conclusion, combined treatment with ADSCs and LVT not only is superior to either ADSCs or LVT therapy alone in the prevention of ALI. Evidence of the beneficial effect may be partly due to improving AFC by paracrine or systemic production of KGF and anti‐inflammatory properties.  相似文献   

11.
We present a method for identifying biomarkers in human lung injury. The method is based on high-resolution nuclear magnetic resonance (NMR) spectroscopy applied to bronchoalveolar lavage fluid (BALF) collected from lungs of critically ill patients. This biological fluid can be obtained by bronchoscopic and non-bronchoscopic methods. The type of lung injury in acute respiratory failure presenting as acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), continues to challenge critical care physicians. We characterize different metabolites in BAL fluid by non-bronchoscopic method (mBALF) for better diagnosis and understanding of ALI/ARDS by NMR spectroscopy. NMR spectra of mBALF collected from 30 patients (9 controls, 10 ARDS and 11 ALI) were analyzed for the identification of biomarkers. Statistical methods such as principal components analysis and partial least square discriminant analysis were carried out on 1H NMR spectrum of mBALF to identify biomarker responsible for separation among different lung injuries classes (ALI and ARDS) and normal lungs. The corresponding correlation of biomarkers with metabolic cycle has given insight into metabolism of lung injuries in critically ill patients. Our study shows statistically significant differentiation of various metabolites concentration in mBALF collected from lungs of ALI, ARDS and healthy control patients, making NMR spectroscopy as a possible new method of characterizing human lung injury.  相似文献   

12.
Acute respiratory distress syndrome (ARDS) is a type of acute lung injury (ALI), which causes high morbidity and mortality. So far, effective clinical treatment of ARDS is still limited. Recently, miR-146b has been reported to play a key role in inflammation. In the present study, we evaluated the functional role of miR-146b in ARDS using the murine model of lipopolysaccharide (LPS)-induced ALI. The miR-146b expression could be induced by LPS stimulation, and miR-146b overexpression was required in the maintenance of body weight and survival of ALI mice; after miR-146b overexpression, LPS-induced lung injury, pulmonary inflammation, total cell and neutrophil counts, proinflammatory cytokines, and chemokines in bronchial alveolar lavage (BAL) fluid were significantly reduced. The promotive effect of LPS on lung permeability through increasing total protein, albumin and IgM in BAL fluid could be partially reversed by miR-146b overexpression. Moreover, in murine alveolar macrophages, miR-146b overexpression reduced LPS-induced TNF-α and interleukin (IL)-1β releasing. Taken together, we demonstrated that miR-146b overexpression could effectively improve the LPS-induced ALI; miR-146b is a promising target in ARDS treatment.  相似文献   

13.
Acute lung injury (ALI) is a severe clinical condition responsible for high mortality and the development of multiple organ dysfunctions, because of the lack of specific and effective therapies for ALI. Increasing evidence from pre‐clinical studies supports preventive and therapeutic effects of mesenchymal stem cells (MSCs, also called mesenchymal stromal cells) in ALI/ARDS (acute respiratory distress syndrome). Therapeutic effects of MSCs were noticed in various delivery approaches (systemic, local, or other locations), multiple origins (bone marrow or other tissues), or different schedules of administrations (before or after the challenges). MSCs could reduce the over‐production of inflammatory mediators, leucocyte infiltration, tissue injury and pulmonary failure, and produce a number of benefit factors through interaction with other cells in the process of lung tissue repair. Thus, it is necessary to establish guidelines, standard operating procedures and evaluation criteria for translating MSC‐based therapies into clinical application for patients with ALI.  相似文献   

14.
Two different repair mechanisms of mesenchymal stem cells (MSCs) are suggested to participate in the repair of acute lung injury (ALI): (i) Cell engraftment mechanism, (ii) Paracrine/endocrine mechanism. However, the exact roles they play in the repair remain unclear. The aim of the study was to evaluate the role of paracrine/endocrine mechanism using a novel intrapleural delivery method of MSCs. Either 1 × 106 MSCs in 300 μl of PBS or 300 μl PBS alone were intrapleurally injected into rats with endotoxin‐induced ALI. On days 1, 3 or 7 after injections, samples of lung tissues and bronchoalveolar lavage fluid (BALF) were collected from each rat for assessment of lung injury, biochemical analysis and histology. The distribution of MSCs was also traced by labelling the cells with 4′,6‐diamidino‐2‐phenylindole dihydrochloride (DAPI). MSCs intrapleural injection significantly improved LPS‐induced lung histopathology compared with PBS‐treated group at day 3. There was also a significant decrease in total cell counts and protein concentration in BALF at day 7 in the MSCs ‐treated rats compared to PBS control group. Tracking the DAPI‐marked MSCs showed that there were no exotic MSCs in the lung parenchyma. MSCs administration resulted in a down‐regulation of pro‐inflammatory response to endotoxin by reducing TNF‐α both in the BALF and in the lung, while up‐regulating the anti‐inflammatory cytokine IL‐10 in the lung. In conclusion, treatment with intrapleural MSCs administration markedly attenuates the severity of endotoxin‐induced ALI. This role is mediated by paracrine/endocrine repair mechanism of MSCs rather than by the cell engraftment mechanism.  相似文献   

15.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are major causes of morbidity and mortality in the intensive care unit, but despite continuing research few effective therapies have been identified. In recent years, inhaled carbon monoxide (CO) has been reported to have cytoprotective effects in several animal models of tissue injury. We therefore evaluated the effects of inhaled CO in three different in vivo mouse models of ALI. Anesthetized C57BL/6 mice were ventilated with oxygen in the presence or absence of CO (500 parts per million) for 1 h before lung injury was induced by lipopolysaccharide (LPS) or oleic acid (OA) administration. Ventilation was then continued with the same gases for a further 2-3 h, with hemodynamic and respiratory parameters monitored throughout. Intratracheal LPS administration induced lung injury with alveolar inflammation (increased lavage fluid neutrophils, total protein, and cytokines). In contrast, intravenous LPS induced a predominantly vascular lung injury, with increased plasma TNF and increased neutrophil activation (surface Mac-1 upregulation and L-selectin shedding) and sequestration within the pulmonary vasculature. Intravenous OA produced deteriorations in lung function, reflected by changes in respiratory mechanics and blood gases and lavage fluid neutrophil accumulation. However, addition of CO to the inspired gas did not produce significant changes in the measured physiological or immunological parameters in the mouse models used in this study. Thus the results do not support the hypothesis that use of inhaled CO is beneficial in the treatment of ALI and ARDS.  相似文献   

16.
Resuscitated hemorrhagic shock is believed to promote the development of acute lung injury (ALI) by priming the immune system for an exaggerated inflammatory response to a second trivial stimulus. This work explored effects of TLR4 on hemorrhage-induced ALI and “second-hit” responses, and further explore the mechanisms involved in “second-hit” responses. Expression of HO-1, IL-10, lung W/D and MPO markedly increased at nearly all time-points examined in HSR/LPS group as compared with sham/LPS group in WT mice. In HSR/LPS mice, the induced amount of IL-10 and the expressions of HO-1 of WT mice were significantly higher compared with TLR-4d/d. This study provides in vivo evidence that pulmonary infections after LPS instillation contribute to local tissue release of pro-inflammatory mediators after HSR systemic. Activation of TLR4 might induce HO-1 expression and HO-1 modulates proinflammatory responses that are triggered via TLR4 signaling.  相似文献   

17.
Acute respiratory distress syndrome (ARDS) is a lethal clinical syndrome characterized by damage of the epithelial barriers and accumulation of pulmonary edema fluid. Protectin conjugates in tissue regeneration 1 (PCTR1), an endogenously produced lipid mediator, are believed to exert anti-inflammatory and pro-resolution effects. PCTR1 (1 µg/kg) was injected at 8 hr after lipopolysaccharide (LPS; 14 mg/kg) administration, and the rate of pulmonary fluid clearance was measured in live rats at 1 hr after PCTR1 treatment. The primary type II alveolar epithelial cells were cultured with PCTR1 (10 nmol/ml) and LPS (1 μg/ml) for 8 hr. PCTR1 effectively improved pulmonary fluid clearance and ameliorated morphological damage and reduced inflammation of lung tissue, as well as improved the survival rate in the LPS-induced acute lung injury (ALI) model. Moreover, PCTR1 markedly increased sodium channel expression as well as Na, K-ATPase expression and activity in vivo and in vitro. In addition, PCTR1i also upregulated the expression of LYVE-1 in vivo. Besides that, BOC-2, HK7, and LY294002 blocked the promoted effect of PCTR1 on pulmonary fluid clearance. Taken together, PCTR1 upregulates sodium channels' expression via activating the ALX/cAMP/P-Akt/Nedd4-2 pathway and increases Na, K-ATPase expression and activity to promote alveolar fluid clearance. Moreover, PCTR1 also promotes the expression of LYVE-1 to recover the lymphatic drainage resulting in the increase of lung interstitial fluid clearance. In summary, these results highlight a novel systematic mechanism for PCTR1 in pulmonary edema fluid clearance after ALI/ARDS, suggesting its potential role in a therapeutic approach for ALI/ARDS.  相似文献   

18.
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a kind of diffuse inflammatory injury caused by various factors, characterized by respiratory distress and progressive hypoxemia. It is a common clinical critical illness. The aim of this study was to investigate the effect and mechanism of the Mucin1 (MUC1) gene and its recombinant protein on lipopolysaccharide (LPS)-induced ALI/ARDS. We cultured human alveolar epithelial cell line (BEAS-2B) and used MUC1 overexpression lentivirus to detect the effect of MUC1 gene on BEAS-2B cells. In addition, we used LPS to induce ALI/ARDS in C57/BL6 mice and use hematoxylin and eosin (H&E) staining to verify the effect of their modeling. Recombinant MUC1 protein was injected subcutaneously into mice. We examined the effect of MUC1 on ALI/ARDS in mice by detecting the expression of inflammatory factors and oxidative stress molecules in mouse lung tissue, bronchoalveolar lavage fluid (BALF) and serum. Overexpression of MUC1 effectively ameliorated LPS-induced damage to BEAS-2B cells. Results of H&E staining indicate that LPS successfully induced ALI/ARDS in mice and MUC1 attenuated lung injury. MUC1 also reduced the expression of inflammatory factors (IL-1β, TNF-α, IL-6 and IL-8) and oxidative stress levels in mice. In addition, LPS results in an increase in the activity of the TLR4/NF-κB signaling pathway in mice, whereas MUC1 decreased the expression of the TLR4/NF-κB signaling pathway. MUC1 inhibited the activity of TLR4/NF-κB signaling pathway and reduced the level of inflammation and oxidative stress in lung tissue of ALI mice.Key words: Mucin1, acute lung injury, inflammation, oxidative stress, TLR4/NF-κB  相似文献   

19.
Leukotrienes, when administered into the pulmonary circulation of intact animals or isolated perfused lungs, have been associated with the formation of pulmonary edema. In addition, leukotrienes were identified in edema fluid and in bronchoalveolar lavage fluid (BALF) both from patients with the adult respiratory distress syndrome (ARDS) and from dogs with ethchlorvynol-induced acute lung injury (ALI). To determine whether the identification of leukotrienes in BALF was a finding common to ALI, etiology notwithstanding, we produced acute lung injury in dogs with phorbol myristate acetate (PMA). PMA produces a model of ALI thought to differ mechanistically from ethchlorvynol-induced ALI. Leukotriene C4 (LTC4), D4 (LTD4) and B4 (LTB4) were measured in BALF before and after PMA administration in intact pentobarbital-anesthetized dogs. The intravenous administration of 20 or 30 micrograms/kg of PMA produced increases in pulmonary vascular resistance (PVR) and extravascular lung water (EVLW), whereas, 10 or 15 micrograms/kg caused only a modest increase in PVR with no increase in EVLW. LTD4 and LTB4 were increased in BALF solely in those animals that developed increases in EVLW. These results, when viewed together with those reported in humans with ARDS and in dogs with ethchlorvynol-induced ALI, support the hypothesis that leukotriene detection in BALF is a feature common to ALI, etiology notwithstanding.  相似文献   

20.
Acute respiratory distress syndrome (ARDS) is a heterogenous syndrome characterised by diffuse alveolar damage, with an increase in lung endothelial and epithelial permeability. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses antiapoptotic and antioxidative effects in distinct situations. In the present study, the protective effects and potential molecular mechanisms of LBP against lipopolysaccharide (LPS)-induced ARDS were investigated in the mice and in the human pulmonary microvascular endothelial cells (HPMECs). The data indicated that pretreatment with LBP significantly attenuated LPS-induced lung inflammation and pulmonary oedema in vivo. LBP significantly reversed LPS-induced decrease in cell viability, increase in apoptosis and oxidative stress via inhibiting caspase-3 activation and intracellular reactive oxygen species (ROS) production in vitro. Moreover, the scratch assay verified that LBP restored the dysfunction of endothelial cells (ECs) migration induced by LPS stimulation. Furthermore, LBP also significantly suppressed LPS-induced NF-κB activation, and subsequently reversed the release of cytochrome c. These results showed the antiapoptosis and antioxidant LBP could partially protect against LPS-induced ARDS through promoting the ECs survival and scavenging ROS via inhibition of NF-κB signalling pathway. Thus, LBP could be potentially used for ARDS against pulmonary inflammation and pulmonary oedema.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号