首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung cancer has the highest mortality among cancers worldwide due to its high incidence and lack of the effective cures. We have previously demonstrated that the membrane ion channel TMEM16A is a potential drug target for the treatment of lung adenocarcinoma and have identified a pocket of inhibitor binding that provides the basis for screening promising new inhibitors. However, conventional drug discovery strategies are lengthy and costly, and the unpredictable side effects lead to a high failure rate in drug development. Therefore, finding new therapeutic directions for already marketed drugs may be a feasible strategy to obtain safe and effective therapeutic drugs. Here, we screened a library of over 1400 Food and Drug Administration–approved drugs through virtual screening and activity testing. We identified a drug candidate, Zafirlukast (ZAF), clinically approved for the treatment of asthma, that could inhibit the TMEM16A channel in a concentration-dependent manner. Molecular dynamics simulations and site-directed mutagenesis experiments showed that ZAF can bind to S387/N533/R535 in the nonselective inhibitor binding pocket, thereby blocking the channel pore. Furthermore, we demonstrate ZAF can target TMEM16A channel to inhibit the proliferation and migration of lung adenocarcinoma LA795 cells. In vivo experiments showed that ZAF can significantly inhibit lung adenocarcinoma tumor growth in mice. Taken together, we identified ZAF as a novel TMEM16A channel inhibitor with excellent anticancer activity, and as such, it represents a promising candidate for future preclinical and clinical studies.  相似文献   

2.
As a calcium-activated chloride channel regulated by the intracellular Ca2+ concentration and membrane potential, TMEM16A has attracted considerable attention and has been proposed as a novel anticancer drug target. We have previously reported that the pocket above the ion conductance pore could be a nonselective inhibitor-binding pocket. However, whether this pocket is druggable remains unexplored. In this study, we performed virtual screening to target the presumed inhibitor-binding pocket and identified a highly effective TMEM16A inhibitor, theaflavin (TF: a tea polyphenol in black tea). Molecular dynamics simulations revealed that theaflavin adopts a “wedge insertion mode” to block the ion conduction pore and induces pore closure. Moreover, the binding mode showed that the TF pedestal plays an important role in pore blockade, and R515, R535, T539, K603, E623, and E633 were determined to be most likely to interact directly with the pedestal. Mutagenesis experiment results corroborated the mechanism through which TF binds to this pocket. Combined with the quantitative calculation results, our data indicated that the three hydroxyl groups on the pedestal may be the most crucial pharmacophores for TMEM16A inhibition by TF. Finally, antitumor experiments revealed that TF could target TMEM16A to inhibit the proliferation and migration of LA795 cells, indicating the potential therapeutic effect of TF on the growth of lung adenocarcinoma with high TMEM16A expression. The successful application of drug screening strategies based on this binding pocket highlights new directions for discovering superior modulators and contributes to the development of novel therapeutics for lung adenocarcinoma.  相似文献   

3.
Anoctamin-1 (ANO1), also known as transmembrane protein 16A (TMEM16A), is identified as a Ca2+-activated Cl channel that is expressed in many organs and tissues. It is involved in numerous major physiological functions and especially in tumor growth. By screening 530 natural compounds, we identified cepharanthine as a potent blocker of ANO1 channels with an IC50 of 11.2 ± 0.9 μM and Emax of 92.7 ± 1.7%. The Lys384, Arg535, Thr539, and Glu624 in ANO1 are critical for the inhibitory effect of cepharanthine. Similar to its effect on ANO1, cepharanthine inhibits ANO2, the closest analog of TMEM16A. In contrast, up to 30 μM of cepharanthine showed limited inhibitory effects on recombinant ANO6 and bestrophin-1-encoded Ca2+-activated Cl currents, but it showed no effects on endogenous volume-regulated anion currents (VRAC). Cepharanthine could also potently suppress endogenous ANO1 currents, significantly inhibit cell proliferation and migration, and induce apoptosis in LA795 lung adenocarcinoma cells. Moreover, animal experiments have shown that cepharanthine can dramatically inhibit the growth of xenograft tumors in mice. The high specificity provided by cepharanthine could be an important foundation for future studies of the physiological role of ANO1 channels, and these findings may reveal a new mechanism of its anticancer effect.  相似文献   

4.
Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs) that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy.  相似文献   

5.
目的:探索醛脱氢酶1A1(aldehyde dehydrogenase 1A1,ALDH1A1)在肺腺癌细胞(lung adenocarcinoma cell,LAC)化疗耐药中的作用及机制,为肺癌临床治疗和新型药物的研发提供实验依据。方法:采用慢病毒载体构建ALDH1A1高表达肺腺癌细胞模型,并通过流式细胞术和western blot技术对该细胞模型进行验证。通过CCK8法检测ALDH1A1高表达肺腺癌细胞对肺癌治疗药物顺铂(cisplatin,DDP)、紫杉醇(paclitaxcel)、厄洛替尼(erlotinib)和吉非替尼(gefitinib)的耐药性。通过检测肿瘤干细胞(cancer stem cell,CSC)分子标志物、上皮-间质转化(Epithelial-Mesenchymal Transition,EMT)分子标志物及细胞迁移能力探讨ALDH1A1高表达对肺腺癌细胞的干性和EMT特征的影响。双硫仑(disulfiram,DSF)是ALDH的抑制剂,我们通过CCK8法和transwell细胞迁移实验探究DSF对肺腺癌细胞体外生长和迁移能力的影响,体内实验探究DSF和厄洛替尼联合用药对HCC827-ALDH1A1细胞皮下异种移植瘤生长的影响。结果:ALDH1A1高表达诱导肺腺癌细胞对厄洛替尼、吉非替尼、紫杉醇和顺铂产生不同程度的耐药,干细胞标志物CD44、CD133蛋白表达上调,EMT间充质标志物vimentin蛋白表达上调,transwell实验结果显示ALDH1A1高表达肺腺癌细胞的迁移能力增强,使用ALDH靶向抑制剂DSF能选择性抑制ALDH1A1高表达肺腺癌细胞所增高的迁移能力并克服HCC827-ALDH1A1细胞皮下异种移植瘤的生长,延缓体内耐药。结论:ALDH1A1能诱导肺腺癌细胞对多种抗肺癌药物产生耐药并发生干细胞样转化,靶向抑制ALDH酶活性可克服由ALDH1A1高表达所产生的耐药,为肺癌的临床治疗提供新的思路。  相似文献   

6.
TMEM16A (also known as anoctamin 1, ANO1) is the molecular basis of the calcium-activated chloride channels, with ten transmembrane segments. Recently, atomic structures of the transmembrane domains of mouse TMEM16A (mTMEM16A) were determined by single-particle electron cryomicroscopy. This gives us a solid ground to discuss the electrophysiological properties and functions of TMEM16A. TMEM16A is reported to be dually regulated by Ca2+ and voltage. In addition, the dysfunction of TMEM16A has been found to be involved in many diseases including cystic fibrosis, various cancers, hypertension, and gastrointestinal motility disorders. TMEM16A is overexpressed in many cancers, including gastrointestinal stromal tumors, gastric cancer, head and neck squamous cell carcinoma (HNSCC), colon cancer, pancreatic ductal adenocarcinoma, and esophageal cancer. Furthermore, overexpression of TMEM16A is related to the occurrence, proliferation, and migration of tumor cells. To date, several studies have shown that many natural compounds and synthetic compounds have regulatory effects on TMEM16A. These small molecule compounds might be novel drugs for the treatment of diseases caused by TMEM16A dysfunction in the future. In addition, recent studies have shown that TMEM16A plays different roles in different diseases through different signal transduction pathways. This review discusses the topology, electrophysiological properties, modulators and functions of TMEM16A in mediates nociception, gastrointestinal dysfunction, hypertension, and cancer and focuses on multiple regulatory mechanisms regarding TMEM16A.  相似文献   

7.
The purpose of this study is to investigate in vitro and ex vivo effects of matrine on the growth of human lung cancer and hepatoma cells and the cancer cell migration as well as the expressions of related proteins in the cancer cells. Matrine significantly inhibited the in vitro and ex vivo growth of human non-small cell lung cancer A549 and hepatoma SMMC-7721 cells. Matrine induced the apoptosis in A549 and SMMC-7721 cells. Western blot analysis indicated that matrine dose-dependently down-regulated the expression of anti-apoptotic protein Bcl-2 and up-regulated the level of pro-apoptotic protein bax, eventually leading the reduction of ratios of Bcl-2/Bax proteins in A549 and SMMC-7721 cells. Furthermore, matrine significantly suppressed the A549 cell migration without reducing the cell viability. In addition, matrine dramatically reduced the secretion of vascular endothelial growth factor A in A549 cells. More importantly, matrine markedly enhanced the anticancer activity of anticancer agent trichostatin A (the histone deacetylase inhibitor) by strongly reducing the viability and/or the ratio of Bcl-2/Bax protein in A549 cells. Our findings suggest that matrine may have the broad therapeutic and/or adjuvant therapeutic application in the treatment of human non-small cell lung cancer and hepatoma.  相似文献   

8.
TMEM16A, a calcium-activated chloride channel (CaCC), is highly amplified and expressed in human cancers and is involved in the growth and metastasis of some malignancies. Inhibition of TMEM16A represents a novel pharmaceutical approach for the treatment of cancers and metastases. The purpose of this study is to identify a new TMEM16A inhibitor, investigate the effects of this inhibitor on the proliferation and metastasis of TMEM16A-amplified SW620 cells, and to elucidate the underlying molecular mechanism in vitro. We identified a novel small-molecule TMEM16A inhibitor dehydroandrographolide (DP). By using patch clamp electrophysiology, we showed that DP inhibited TMEM16A chloride currents in Fisher rat thyroid (FRT) cells that were transfected stably with human TMEM16A and in TMEM16A-overexpressed SW620 cells but did not alter cystic fibrosis transmembrane conductance regulator (CFTR) chloride currents. Further functional studies showed that DP suppressed the proliferation of SW620 cells in a dose- and time-dependent manner using MTT assays. Moreover, DP significantly inhibited migration and invasion of SW620 cells as detected by wound-healing and transwell assays. Further mechanistic study demonstrated that knockdown of human TMEM16A decreased the inhibitory effect of DP on the proliferation of SW620 cells and that TMEM16A-dependent cells (SW620 and HCT116) were more sensitive to DP than TMEM16A-independent cells (SW480 and HCT8). In addition, we found that treatment of SW620 cells with DP led to a decrease in TMEM16A protein levels but had no effect on TMEM16A mRNA levels. The current work reveals that DP, a novel TMEM16A inhibitor, exerts its anticancer activity on SW620 cells partly through a TMEM16A-dependent mechanism, which may introduce a new targeting approach for an antitumour therapy in TMEM16A-amplified cancers.  相似文献   

9.
10.
Transmembrane protein (TMEM) is a family of protein that spans cytoplasmic membranes and allows cell–cell and cell–environment communication. Dysregulation of TMEMs has been observed in multiple cancers. However, little is known about TMEM116 in cancer development. In this study, we demonstrate that TMEM116 is highly expressed in non-small-cell lung cancer (NSCLC) tissues and cell lines. Inactivation of TMEM116 reduced cell proliferation, migration and invasiveness of human cancer cells and suppressed A549 induced tumor metastasis in mouse lungs. In addition, TMEM116 deficiency inhibited PDK1-AKT-FOXO3A signaling pathway, resulting in accumulation of TAp63, while activation of PDK1 largely reversed the TMEM116 deficiency induced defects in cancer cell motility, migration and invasive. Together, these results demonstrate that TMEM116 is a critical integrator of oncogenic signaling in cancer metastasis.Subject terms: Non-small-cell lung cancer, Non-small-cell lung cancer  相似文献   

11.
Several protein-coding genes have been identified to play essential roles in cancer biology, and they are dysregulated in many tumors. Transmembrane protein 106C (TMEM106C) is differentially expressed in several human and porcine diseases; however, the expression and biological functions of TMEM106C in hepatocellular carcinoma (HCC) are not clear. In our study, we obtained paired tissue samples from patients undergoing resection for HCC and public databases, which were analyzed for TMEM106C expression using quantitative real-time polymerase chain reaction (qRT-PCR). We further conducted in vitro and in vivo experiments in HCC cell lines and nude mice, respectively, in which TMEM106C was overexpressed or knocked down. Cell-Counting Kit-8 and colony formation experiments were used to determine the influence of TMEM106C on cell proliferation, flow cytometric assays were used to detect the influence on cell cycle distribution and apoptosis, and transwell assays were used for detecting changes in cell migration and invasion. TMEM106C levels were significantly elevated in HCC tissues and cell lines from public databases and our collected specimens from patients. Moreover, higher TMEM106C expression levels predicted a poor prognosis in HCC patients in survival analysis. Overexpression of TMEM106C in HCC cells accelerated cell growth, migration, and invasion, but it inhibited cell apoptosis by targeting forkhead box O-1 (FOXO1) and FOXO3. Conversely, TMEM106C knockdown impeded cell proliferation and metastasis, whereas it enhanced the rate of apoptosis. More important, knockdown of the expression of TMEM106C in HCC cells inhibited the growth of xenograft tumors in vivo. Collectively, these results suggest that TMEM106C acts as an oncogene and can serve as a potential therapeutic target for HCC in the future.  相似文献   

12.
Synaptotagmins are a class of proteins that play an important role in the secretion of neurotransmitters by synaptic vesicles. However, recent studies have shown that members of this family also have a certain function in the development of tumors. In this study, we first identified through The Cancer Genome Atlas data analyzed that a novel synaptotagmin, SYT13, was closely related to the prognosis of lung adenocarcinoma, but was not significantly correlated with the prognosis of lung squamous cell carcinoma. Then we knocked down the expression of SYT13 gene in lung adenocarcinoma cell lines A549 and H1299, and successfully induced decreased proliferation and clonality of lung adenocarcinoma cell lines, and observed cell cycle arrest and apoptosis enhancement in both cell lines. In addition, we detected the migration ability of SYT13 knockdown lung adenocarcinoma cell lines by the cell scratch test and the transwell test. Interestingly, there was a decreased migration ability of SYT13 knockdown in H1299 cells even though there was no significant difference in the migration of A549 cells. These results demonstrate that SYT13 plays an important role in the development of lung adenocarcinoma, which deepens our understanding of the mechanism of lung adenocarcinoma development and provides new possibilities for targeted therapy of lung adenocarcinoma.  相似文献   

13.
Previous reports point out to a functional relationship of the cystic fibrosis transmembrane conductance regulator (CFTR) and Ca(2+) activated Cl(-) channels (CaCC). Recent findings showing that TMEM16A forms the essential part of CaCC, prompted us to examine whether CFTR controls TMEM16A. Inhibition of endogenous CaCC by activation of endogenous CFTR was found in 16HBE human airway epithelial cells, which also express TMEM16A. In contrast, CFBE airway epithelial cells lack of CFTR expression, but express TMEM16A along with other TMEM16-proteins. These cells produce CaCC that is inhibited by overexpression and activation of CFTR. In HEK293 cells coexpressing TMEM16A and CFTR, whole cell currents activated by IMBX and forskolin were significantly reduced when compared with cells expressing CFTR only, while the halide permeability sequence of CFTR was not changed. Expression of TMEM16A, but not of TMEM16F, H or J, produced robust CaCC, which that were inhibited by CaCCinh-A01 and niflumic acid, but not by CFTRinh-172. TMEM16A-currents were attenuated by additional expression of CFTR, and were completely abrogated when additionally expressed CFTR was activated by IBMX and forskolin. On the other hand, CFTR-currents were attenuated by additional expression of TMEM16A. CFTR and TMEM16A were both membrane localized and could be coimmunoprecipitated. Intracellular Ca(2+) signals elicited by receptor-stimulation was not changed during activation of CFTR, while ionophore-induced rise in [Ca(2+)](i) was attenuated after stimulation of CFTR. The data indicate that both CFTR and TMEM16 proteins are separate molecular entities that show functional and molecular interaction.  相似文献   

14.
Lung cancer is a major cause of cancer-related mortality in the United States and around the world. Due to the pre-existing or acquired chemo-resistance, the current standard chemotherapy regimens only show moderate activity against lung cancer. In the current study, we explored the potential anti-lung cancer activity of cinobufotalin in vivo and in vitro, and studied the underlying mechanisms. We demonstrated that cinobufotalin displayed considerable cytotoxicity against lung cancer cells (A549, H460 and HTB-58 lines) without inducing significant cell apoptosis. Our data suggest that mitochondrial protein cyclophilin D (Cyp-D)-dependent mitochondrial permeability transition pore (mPTP) opening mediates cinobufotalin-induced non-apoptotic death of lung cancer cells. The Cyp-D inhibitor cyclosporine A (CsA), the mPTP blocker sanglifehrin A (SfA), and Cyp-D shRNA-silencing significantly inhibited cinobufotalin-induced mitochondrial membrane potential (MMP) reduction and A549 cell death (but not apoptosis). Using a mice xenograft model, we found that cinobufotalin inhibited A549 lung cancer cell growth in vivo. Thus, cinobufotalin mainly induces Cyp-D-dependent non-apoptotic death in cultured lung cancer cells. The results of this study suggest that cinobufotalin might be further investigated as a novel anti-lung cancer agent.  相似文献   

15.
Midkine (MDK) is a heparin-binding growth factor that is highly expressed in many malignant tumors, including lung cancers. MDK activates the PI3K pathway and induces anti-apoptotic activity, in turn enhancing the survival of tumors. Therefore, the inhibition of MDK is considered a potential strategy for cancer therapy. In the present study, we demonstrate a novel small molecule compound (iMDK) that targets MDK. iMDK inhibited the cell growth of MDK-positive H441 lung adenocarcinoma cells that harbor an oncogenic KRAS mutation and H520 squamous cell lung cancer cells, both of which are types of untreatable lung cancer. However, iMDK did not reduce the cell viability of MDK-negative A549 lung adenocarcinoma cells or normal human lung fibroblast (NHLF) cells indicating its specificity. iMDK suppressed the endogenous expression of MDK but not that of other growth factors such as PTN or VEGF. iMDK suppressed the growth of H441 cells by inhibiting the PI3K pathway and inducing apoptosis. Systemic administration of iMDK significantly inhibited tumor growth in a xenograft mouse model in vivo. Inhibition of MDK with iMDK provides a potential therapeutic approach for the treatment of lung cancers that are driven by MDK.  相似文献   

16.
17.
Recent studies have shown that transmembrane protein 16 A (TMEM16A) is a subunit of calcium-activated chloride channels (CACCs). Pharmacological agents have been used to probe the functional role of CACCs, however their effect on TMEM16A currents has not been systematically investigated. In the present study, we characterized the voltage and concentration-dependent effects of 2 traditional CACC inhibitors (niflumic acid and anthracene-9-carboxcylic acid) and 2 novel CACC / TMEM16A inhibitors (CACCinhA01 and T16AinhA01) on TMEM16A currents. The whole cell patch clamp technique was used to record TMEM16A currents from HEK 293 cells that stably expressed human TMEM16A. Niflumic acid, A-9-C, CACCinhA01 and T16AinhA01 inhibited TMEM16A currents with IC50 values of 12, 58, 1.7 and 1.5 µM, respectively, however, A-9-C and niflumic acid were less efficacious at negative membrane potentials. A-9-C and niflumic acid reduced the rate of TMEM16A tail current deactivation at negative membrane potentials and A-9-C (1 mM) enhanced peak TMEM16A tail current amplitude. In contrast, the inhibitory effects of CACCinhA01 and T16AinhA01 were independent of voltage and they did not prolong the rate of TMEM16A tail current deactivation. The effects of niflumic acid and A-9-C on TMEM16A currents were similar to previous observations on CACCs in vascular smooth muscle, strengthening the hypothesis that they are encoded by TMEM16A. However, CACCinhA01 and T16AinhA01 were more potent inhibitors of TMEM16A channels and their effects were not diminished at negative membrane potentials making them attractive candidates to interrogate the functional role of TMEM16A channels in future studies.  相似文献   

18.
TMEM16A (ANO1) functions as a calcium-activated chloride channel (CaCC). We developed pharmacological tools to investigate the contribution of TMEM16A to CaCC conductance in human airway and intestinal epithelial cells. A screen of ~110,000 compounds revealed four novel chemical classes of small molecule TMEM16A inhibitors that fully blocked TMEM16A chloride current with an IC(50) < 10 μM, without interfering with calcium signaling. Following structure-activity analysis, the most potent inhibitor, an aminophenylthiazole (T16A(inh)-A01), had an IC(50) of ~1 μM. Two distinct types of inhibitors were identified. Some compounds, such as tannic acid and the arylaminothiophene CaCC(inh)-A01, fully inhibited CaCC current in human bronchial and intestinal cells. Other compounds, including T16A(inh)-A01 and digallic acid, inhibited total CaCC current in these cells poorly, but blocked mainly an initial, agonist-stimulated transient chloride current. TMEM16A RNAi knockdown also inhibited mainly the transient chloride current. In contrast to the airway and intestinal cells, all TMEM16A inhibitors fully blocked CaCC current in salivary gland cells. We conclude that TMEM16A carries nearly all CaCC current in salivary gland epithelium, but is a minor contributor to total CaCC current in airway and intestinal epithelia. The small molecule inhibitors identified here permit pharmacological dissection of TMEM16A/CaCC function and are potential development candidates for drug therapy of hypertension, pain, diarrhea, and excessive mucus production.  相似文献   

19.
目的: 探讨低氧促进肺腺癌A549细胞迁移的机制。方法: 培养肺腺癌A549细胞,转染慢病毒获得稳定敲低ACC1的A549细胞株,转染si-RNA获得敲低SREBP-1的A549细胞。分别以低氧(5% O2)联合低氧诱导因子1α(HIF-1α)抑制剂PX-478(25 μmol)处理A549细胞,低氧联合亚油酸(LA)(20 μmol)处理敲低ACC1的A549细胞,低氧处理敲低胆固醇调节原件结合蛋白1(SREBP-1)的A549细胞。Transwell实验检测细胞迁移,蛋白质印迹法检测HIF-1α、ACC1及上皮-间质转化(EMT)相关波形蛋白(Vimentin)及E-钙黏蛋白(E-Cadherin)的表达与SREBP-1的表达,实时荧光定量聚合酶链反应(RT-qPCR)检测低氧联合HIF-1α抑制剂PX-478(25 μmol)处理A549细胞后ACC1及SREBP-1 mRNA水平变化。每项实验重复三次。结果: 与常氧组相比,低氧组A549细胞迁移数增加,ACC1与HIF-1α表达上调(P均<0.01),SREBP-1表达上调(P<0.05);与低氧对照组相比,PX-478(25 μmol)抑制A549细胞迁移,SREBP-1表达下调(P<0.05);低氧处理A549细胞后ACC1 mRNA上升(P<0.05),SREBP-1 mRNA水平上升(P<0.01);低氧并使用PX-478(25 μmol)处理A549细胞24 h,ACC1 mRNA水平下降(P<0.05),SREBP-1 mRNA 水平下降(P<0.01);转染si-RNA获得敲低SREBP-1的A549细胞,Transwell 实验显示si-SREBP-1组细胞迁移数较常氧对照组减少(P<0.01);低氧处理si-SREBP-1组与si-NC组,与对照组相比si-SREBP-1组细胞迁移数减少(P<0.01)但与常氧组相比差异无统计学意义(P>0.05);Western blot检测到si-SREBP-1组ACC1表达较对照组下降(P<0.01);低氧处理si-SREBP-1组,ACC1表达较对照组下降(P<0.01);敲低ACC1抑制A549细胞迁移(P<0.05),敲低ACC1后A549细胞在常氧和5% O2条件下细胞迁移数目差异无统计学意义(P> 0.05);低氧处理敲低ACC1的A549细胞并给予LA(25 μmol)促进A549细胞迁移(P<0.05)。结论: 低氧通过HIF-1α/SREBP-1/ACC1途径调节脂肪酸代谢进而促进肺腺癌A549细胞迁移。  相似文献   

20.
Two families of proteins, the bestrophins (Best) and the recently cloned TMEM16 proteins (anoctamin, Ano), recapitulate properties of Ca(2+)-activated Cl(-) currents. Best1 is strongly expressed in the retinal pigment epithelium and could have a function as a Ca(2+)-activated Cl(-) channel as well as a regulator of Ca(2+) signaling. It is also present at much lower levels in other cell types including epithelial cells, where it regulates plasma membrane localized Cl(-) channels by controlling intracellular Ca(2+) levels. Best1 interacts with important Ca(2+)-signaling proteins such as STIM1 and can interact directly with other Ca(2+)-activated Cl(-) channels such as TMEM16A. Best1 is detected in the endoplasmic reticulum (ER) where it shapes the dynamic ER structure and regulates cell proliferation, which could be important for renal cystogenesis. Ca(2+)-activated Cl(-) channels of the anoctamin family (TMEM16A) show biophysical and pharmacological properties that are typical for endogenous Ca(2+)-dependent Cl(-) channels. TMEM16 proteins are abundantly expressed and many reports demonstrate their physiological importance in epithelial as well as non-epithelial cells. These channels are also activated by cell swelling and can therefore control cell volume, proliferation and apoptosis. To fully understand the function and regulation of Ca(2+)-activated Cl(-) currents, it is necessary to appreciate that Best1 and TMEM16A are embedded in a protein network and that they probably operate in functional microdomains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号