首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study addresses the role of bone morphogenetic protein‐7 (BMP‐7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP‐7 in monolayer and three‐dimensional cultures. After 3 days of stimulation, BMP‐7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7–21 days, BMP‐7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real‐time PCR, Western blot, histological, and immunohistochemical staining. BMP‐7 supplementation appeared to enhance upregulation of lineage‐specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP‐7 in the presence of TGF‐β3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP‐7 increased alkaline phosphatase activity and dose‐dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP‐7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP‐7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co‐ordinating with initial lineage‐specific signals to accelerate cell fate determination. BMP‐7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell‐based tissue repair. J. Cell. Biochem. 109: 406–416, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
3.
Bone marrow mesenchymal stem cells (MSCs) have multi-differentiation capability. Their endothelial cell (EC) oriented differentiation is the key to vasculogenesis, in which both mechanical and chemical stimulations play important roles. Most previous studies reported individual effects of VEGF or fluid shear stress (SS), when MSCs were subjected to shear stress of 10–15 dyn/cm2 over 24 hr. In this paper, we investigated responses of MSCs from young Sprague Dawley rats to shear stress, VEGF and the combination of the two stimuli. Our study showed that the combined stimulation of shear stress and VEGF resulted in more profound EC oriented differentiation of MSCs in comparison to any individual stimulation. Furthermore, we subjected MSCs to prolonged period of fluid shear stimulation, i.e. 48 hr rather than 24 hr, and increased the magnitude of the shear stress from 10 dyn/cm2 to 15, 20 and 25 dyn/cm2. We found that without VEGF, the endothelium oriented differentiation of MSCs that was seen following 24 hr of shear stimulation was largely abolished if we extended the shear stimulation to 48 hr. A similar sharp decrease in MSC differentiation was also observed when the magnitude of the shear stress was increased from 10–15 dyn/cm2 to 20–25 dyn/cm2 in 24 hr shear stimulation studies. However, with combined VEGF and fluid shear stimulation, most of the endothelial differentiation was retained following an extended period, i.e. at 48 hr, of shear stimulation. Our study demonstrates that chemical and mechanical stimulations work together in determining MSC differentiation dynamics.  相似文献   

4.
Adult human mesenchymal stem cells (MSCs) hold promise for an increasing list of therapeutic uses due to their ease of isolation, expansion, and multi‐lineage differentiation potential. To maximize the clinical potential of MSCs, the underlying mechanisms by which MSC functionality is controlled must be understood. We have taken a deconstructive approach to understand the individual components in vitro, namely the role of candidate “stemness” genes. Our recent microarray gene expression profiling data suggest that interleukin‐6 (IL‐6) may contribute to the maintenance of MSCs in their undifferentiated state. In this study, we showed that IL‐6 gene expression is significantly higher in undifferentiated MSCs as compared to their chondrogenic, osteogenic, and adipogenic derivatives. Moreover, we found that MSCs secrete copious amounts of IL‐6 protein, which decreases dramatically during osteogenic differentiation. We further evaluated the role of IL‐6 for maintenance of MSC “stemness,” using a series of functional assays. The data showed that IL‐6 is both necessary and sufficient for enhanced MSC proliferation, protects MSCs from apoptosis, inhibits adipogenic and chondrogenic differentiation of MSCs, and increases the rate of in vitro wound healing of MSCs. We further identified ERK1/2 activation as the key pathway through which IL‐6 regulates both MSC proliferation and inhibition of differentiation. Taken together, these findings show for the first time that IL‐6 maintains the proliferative and undifferentiated state of bone marrow‐derived MSCs, an important parameter for the optimization of both in vitro and in vivo manipulation of MSCs. J. Cell. Biochem. 108: 577–588, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   

5.
Mesenchymal stromal cells (MSCs) have the potential to differentiate into a variety of mature cell types and are a promising source of regenerative medicine. The success of regenerative medicine using MSCs strongly depends on their differentiation potential. In this study, we sought to identify marker genes for predicting the osteogenic differentiation potential by comparing ilium MSC and fibroblast samples. We measured the mRNA levels of 95 candidate genes in nine ilium MSC and four fibroblast samples before osteogenic induction, and compared them with alkaline phosphatase (ALP) activity as a marker of osteogenic differentiation after induction. We identified 17 genes whose mRNA expression levels positively correlated with ALP activity. The chondrogenic and adipogenic differentiation potentials of jaw MSCs are much lower than those of ilium MSCs, although the osteogenic differentiation potential of jaw MSCs is comparable with that of ilium MSCs. To select markers suitable for predicting the osteogenic differentiation potential, we compared the mRNA levels of the 17 genes in ilium MSCs with those in jaw MSCs. The levels of 7 out of the 17 genes were not substantially different between the jaw and ilium MSCs, while the remaining 10 genes were expressed at significantly lower levels in jaw MSCs than in ilium MSCs. The mRNA levels of the seven similarly expressed genes were also compared with those in fibroblasts, which have little or no osteogenic differentiation potential. Among the seven genes, the mRNA levels of IGF1 and SRGN in all MSCs examined were higher than those in any of the fibroblasts. These results suggest that measuring the mRNA levels of IGF1 and SRGN before osteogenic induction will provide useful information for selecting competent MSCs for regenerative medicine, although the effectiveness of the markers is needed to be confirmed using a large number of MSCs, which have various levels of osteogenic differentiation potential.  相似文献   

6.
Human mesenchymal stem cells (hMSCs) are able to self-replicate and differentiate into a variety of cell types including osteoblasts, chondrocytes, adipocytes, endothelial cells, and muscle cells. It was reported that fibroblast growth factor-2 (FGF-2) increased the growth rate and multidifferentiation potentials of hMSCs. In this study, we investigated the genes involved in the promotion of osteogenic and chondrogenic differentiation potentials of hMSCs in the presence of FGF-2. hMSCs were maintained in the medium with FGF-2. hMSCs were harvested for the study of osteogenic or chondrogenic differentiation potential after 15 days’ culture. To investigate osteogenic differentiation, the protein levels of alkaline phosphatase (ALP) and the mRNA expression levels of osteocalcin were measured after the induction of osteogenic differentiation. Moreover, the investigation for chondrogenic differentiation was performed by measuring the mRNA expression levels of type II and type X collagens after the induction of chondrogenic differentiation. The expression levels of ALP, type II collagen, and type X collagen of hMSCs cultured with FGF-2 were significantly higher than control. These results suggested that FGF-2 increased osteogenic and chondrogenic differentiation potentials of hMSCs. Furthermore, microarray analysis was performed after 15 days’ culture in the medium with FGF-2. We found that the overall insulin-like growth factor-I (IGF-I) and transforming growth factor-β (TGF-β) signaling pathways were inactivated by FGF-2. These results suggested that the inactivation of IGF-I and TGF-β signaling promotes osteogenic and chondrogenic differentiation potential of hMSCs in the presence of FGF-2.  相似文献   

7.
《Cytotherapy》2014,16(7):893-905
Background aimsCord blood (CB) and amniotic fluid (AF) could represent new and attractive mesenchymal stromal cell (MSC) sources, but their potential therapeutic applications are still limited by lack of standardized protocols for isolation and differentiation. In particular, chondrogenic differentiation has never been deeply investigated.MethodsMSCs were obtained from CB and AF samples collected during cesarean sections at term and compared for their biological and differentiation properties, with particular interest in cartilage differentiation, in which quantitative real-time polymerase chain reaction and immunohistochemical analyses were performed to evaluate the expression of type 2 collagen, type 10 collagen, SRY-box9 and aggrecan.ResultsWe were able to isolate MSCs from 12 of 30 (40%) and 5 of 20 (25%) CB and AF units, respectively. Fluorescence in situ hybridization analysis indicated the fetal origin of isolated MSC strains. Both populations expressed mesenchymal but not endothelial and hematopoietic markers, even though we observed a lower expression of human leukocyte antigen (HLA) I in CB-MSCs. No differences in proliferation rate and cell cycle analysis could be detected. After osteogenic induction, both populations showed matrix mineralization and typical marker expression. Under chondrogenic conditions, pellets derived from CB-MSCs, in contrast with AF-MSCs pellets, were significantly larger, showed cartilage-like morphology and resulted positive for chondrocyte-associated markers, such as type 2 collagen, type 10 collagen, SRY-box9 and aggrecan.ConclusionsOur results show that CB-MSCs and AF-MSCs collected at term differ from each other in their biological and differentiation properties. In particular, only CB-MSCs showed a clear chondrogenic potential and thus could represent an ideal candidate for cartilage-tissue engineering.  相似文献   

8.
高杰  韩建伟  关凯  杨彤涛  李放 《生物磁学》2013,(30):5855-5859
目的:研究miRNAs在人骨髓来源间充质干细胞软骨诱导分化过程中的表达情况。方法:以从骨髓中分离培养的MSCs及软骨诱导培养后的细胞为实验对象,利用基因芯片检测miRNAs的表达情况,由SAM分析得到MSCs较其诱导培养细胞中差异表达的miRNAs,再进行生物信息学分析。结果:①分离培养出的MSCs经软骨诱导培养21天后,已具有软骨细胞特性,经芯片检测并SAM分析,软骨诱导培养的细胞较MSCs高表达的miRNAs有6个:hsa-miR-572、hsa-miR-130b、hsa-miR-193b、hsa-miR-28、hsa-miR-152、hsa-miR-560;软骨诱导培养的细胞较MSCs低表达的miRNAs有2个:hsa-miR-424、hsa-miR-122a。②利用TargetScan预测其靶基因,并行生物信息学分析,其中hsa-miR-130b、hsa-miR-193b、hsa-miR-152及hsa-miR-424的预测靶基因中多为参与细胞分化、骨形成、软骨形成及干细胞表型相关的基因。结论:hsa-miR-130b、hsa-miR-193b、hsa-miR-152和hsa-miR-424等对人骨髓来源间充质干细胞的软骨分化起着重要调控作用。  相似文献   

9.
Bone-marrow-derived mesenchymal stem cells (MSCs) are candidates for regeneration applications in musculoskeletal tissue such as cartilage and bone. Various soluble factors in the form of growth factors and cytokines have been widely studied for directing the chondrogenic and osteogenic differentiation of MSCs, but little is known about the way that the composition of extracellular matrix (ECM) components in three-dimensional microenvironments plays a role in regulating the differentiation of MSCs. To define whether ECM components influence the regulation of osteogenic and chondrogenic differentiation by MSCs, we encapsulated MSCs in poly-(ethylene glycol)-based (PEG-based) hydrogels containing exogenous type I collagen, type II collagen, or hyaluronic acids (HA) and cultured them for up to 6 weeks in chondrogenic medium containing transforming growth factor-β1 (10 ng/ml) or osteogenic medium. Actin cytoskeleton organization and cellular morphology were strongly dependent on which ECM components were added to the PEG-based hydrogels. Additionally, chondrogenic differentiation of MSCs was marginally enhanced in collagen-matrix-based hydrogels, whereas osteogenic differentiation, as measured by calcium accumulation, was induced in HA-containing hydrogels. Thus, the microenvironments created by exogenous ECM components seem to modulate the fate of MSC differentiation.  相似文献   

10.
11.
Successful cell therapy will depend on the ability to monitor transplanted cells. With cell labeling, it is important to demonstrate efficient long term labeling without deleterious effects on cell phenotype and differentiation capacity. We demonstrate long term (7 weeks) retention of superparamagnetic iron oxide particles (SPIO) by mesenchymal stem cells (MSCs) in vivo, detectable by MRI. In vitro, multilineage differentiation (osteogenic, chondrogenic and adipogenic) was demonstrated by histological evaluation and molecular analysis in SPIO labeled and unlabeled cells. Gene expression levels were comaparable to unlabeled controls in adipogenic and chondrogenic conditions however not in the osteogenic condition. MSCs seeded into a scaffold for 21 days and implanted subcutaneously into nude mice for 4 weeks, showed profoundly altered phenotypes in SPIO labeled samples compared to implanted unlabeled control scaffolds, indicating chondrogenic differentiation. This study demonstrates long term MSC traceability using SPIO and MRI, uninhibited multilineage MSC differentiation following SPIO labeling, though with subtle but significant phenotypical alterations.  相似文献   

12.
The local oxygen tension is a key regulator of the fate of mesenchymal stem cells (MSCs). The objective of this study was to investigate the effect of a low oxygen tension during expansion and differentiation on the proliferation kinetics as well as the subsequent osteogenic and chondrogenic potential of MSCs. We first hypothesised that expansion in a low oxygen tension (5% pO(2)) would improve both the subsequent osteogenic and chondrogenic potential of MSCs compared to expansion in a normoxic environment (20% pO(2)). Furthermore, we hypothesised that chondrogenic differentiation in a low oxygen environment would suppress hypertrophy of MSCs cultured in both pellets and hydrogels used in tissue engineering strategies. MSCs expanded at 5% pO(2) proliferated faster forming larger colonies, resulting in higher cell yields. Expansion at 5% pO(2) also enhanced subsequent osteogenesis of MSCs, whereas differentiation at 5% pO(2) was found to be a more potent promoter of chondrogenesis than expansion at 5% pO(2). Greater collagen accumulation, and more intense staining for collagen types I and X, was observed in pellets maintained at 20% pO(2) compared to 5% pO(2). Both pellets and hydrogels stained more intensely for type II collagen when undergoing chondrogenesis in a low oxygen environment. Differentiation at 5% pO(2) also appeared to inhibit hypertrophy in both pellets and hydrogels, as demonstrated by reduced collagen type X and Alizarin Red staining and alkaline phosphatase activity. This study demonstrates that the local oxygen environment can be manipulated in vitro to either stabilise a chondrogenic phenotype for use in cartilage repair therapies or to promote hypertrophy of cartilaginous grafts for endochondral bone repair strategies.  相似文献   

13.
目的:研究软骨寡聚基质蛋白(cartilage oligomeric matrix protein,COMP)过表达对BMP-2诱导骨髓间充质干细胞成骨及成软骨分化的影响。方法:BMP-2诱导骨髓间充质干细胞分化,通过脂质体转染含人COMP基因的质粒使骨髓间充质干细胞过表达COMP,采用实时定量PCR和Western blotting分析COMP基因过表达、成骨相关基因Ⅰ型胶原、RUNX2、骨钙蛋白以及成软骨相关基因Ⅱ型胶原、SOX9、蛋白聚糖、X型胶原的表达变化;通过茜素红染色观察成骨终末阶段矿化结节的生成情况,阿利新蓝染色观察细胞基质蛋白多糖的合成情况。结果:质粒转染后骨髓间充质干细胞COMP基因蛋白和mRNA表达水平显著提高(P<0.05)。COMP基因过表达后,成骨标记基因RUNX2、Ⅰ型胶原(Col1a1)mRNA水平均显著低于对照组(P<0.05),RUNX2、骨钙蛋白(Osteocalcin)蛋白表达水平明显低于对照组(P<0.05),而成软骨标记基因SOX9、蛋白聚糖(Aggrecan)mRNA水平均显著高于对照组(P<0.05),SOX9、Ⅱ型胶原(Col2a1)蛋白表达均明显多于对照组(P<0.05)。细胞成骨茜素红染色弱于对照组,而阿利新蓝染色强于对照组。过表达组细胞X型胶原(Col10a1)基因表达显著低于对照组(P<0.05),结论:骨髓间充质干细胞COMP基因过表达可抑制BMP-2诱导其成骨分化,促进骨髓间充质干细胞成软骨分化,并抑制软骨细胞的成熟肥大,为软骨组织工程研究提供新的方向。  相似文献   

14.
Recent investigations credited important roles to C-type natriuretic peptide (CNP) signaling during chondrogenesis. This study investigated the putative role of CNP in transforming growth factor (TGF)-β1 induced in vitro chondrogenic differentiation of mesenchymal stem cells (MSCs) in pellet culture. MSCs were derived from human trabecular bone and were characterized on the basis of their cell surface antigens and adipogenic, osteogenic, and chondrogenic differentiation potential. TGF-β1 induced chondrogenic differentiation and glycosaminoglycan (GAG) synthesis was analyzed on the basis of basic histology, collagen type II, Sox 9 and aggrecan expressions, and Alcian blue staining. Results revealed that human trabecular bone-derived MSCs express CNP and NPR-B analyzed on the basis of RT-PCR and immunohistochemistry. In pellet cultures of MSCs TGF-β1 successfully induced chondrogenic differentiation and GAG synthesis. RT-PCR analyses of both CNP and NPR-B during this process revealed an activation of this signaling pathway in response to TGF-β1. Similar cultures induced with TGF-β1 and treated with different doses of CNP showed that CNP supplementation at 10?8 and 10?7 M concentrations significantly increased GAG synthesis in a dose dependent manner, whereas at 10?6 M concentration this stimulatory effect was diminished. In conclusion, CNP/NPR-B signaling pathway is activated during TGF-β1 induced chondrogenic differentiation of human trabecular bone-derived MSCs and may strongly be involved in GAG synthesis during this process. This effect is likely to be a dose-dependent effect.  相似文献   

15.
16.
There have been many clinical trials recently using ex vivo‐expanded human mesenchymal stem cells (MSCs) to treat several disease states such as graft‐versus‐host disease, acute myocardial infarction, Crohn's disease, and multiple sclerosis. The use of MSCs for therapy is expected to become more prevalent as clinical progress is demonstrated. However, the conventional 2‐dimensional (2D) culture of MSCs is laborious and limited in scale potential. The large dosage requirement for many of the MSC‐based indications further exacerbates this manufacturing challenge. In contrast, expanding MSCs as spheroids does not require a cell attachment surface and is amenable to large‐scale suspension cell culture techniques, such as stirred‐tank bioreactors. In the present study, we developed and optimized serum‐free media for culturing MSC spheroids. We used Design of Experiment (DoE)‐based strategies to systematically evaluate media mixtures and a panel of different components for effects on cell proliferation. The optimization yielded two prototype serum‐free media that enabled MSCs to form aggregates and proliferate in both static and dynamic cultures. MSCs from spheroid cultures exhibited the expected immunophenotype (CD73, CD90, and CD105) and demonstrated similar or enhanced differentiation potential toward all three lineages (osteogenic, chondrogenic, adipogenic) as compared with serum‐containing adherent MSC cultures. Our results suggest that serum‐free media for MSC spheroids may pave the way for scale‐up production of MSCs in clinically relevant manufacturing platforms such as stirred tank bioreactors. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:974–983, 2014  相似文献   

17.
Bone marrow mesenchymal stem cells (MSCs) are plastic adherent cells that can differentiate into various tissue lineages, including osteoblasts, adipocytes and chondrocytes. However, this progenitor property is not shared by all cells within the MSC population. In addition, MSCs vary in their proliferation capacity and expression of markers. Because of heterogeneity of CD146 expression in the MSC population, we compared CD146−/Low and CD146High cells under clonal conditions and after sorting of the non-clonal cell population to determine whether this expression is associated with specific functions. CD146−/Low and CD146High bone marrow MSCs did not differ in colony-forming unit-fibroblast number, osteogenic, adipogenic and chondrogenic differentiation or in vitro haematopoietic-supportive activity. However, CD146−/Low clones proliferated slightly but significantly faster than did CD146High clones. In addition, a strong expression of CD146 molecule was associated with a commitment to a vascular smooth muscle cell (VSMC) lineage characterized by a strong up-regulation of calponin-1 and SM22α expression and an ability to contract collagen matrix. Thus, within a bone marrow MSC population, certain subpopulations characterized by high expression of CD146, are committed towards a VSMC lineage.  相似文献   

18.

Background aims

Although intra-articular injection of platelet products is increasingly used for joint regenerative approaches, there are few data on their biological effects on joint-resident multipotential stromal cells (MSCs), which are directly exposed to the effects of these therapeutic strategies. Therefore, this study investigated the effect of platelet lysate (PL) on synovial fluid–derived MSCs (SF-MSCs), which in vivo have direct access to sites of cartilage injury.

Methods

SF-MSCs were obtained during knee arthroscopic procedures (N?=?7). Colony forming unit–fibroblast (CFU-F), flow-cytometric phenotyping, carboxyfluorescein succinimidyl ester-based immunomodulation for T-cell and trilineage differentiation assays were performed using PL and compared with standard conditions.

Results

PL-enhanced SF-MSC (PL-MSC) proliferation as CFU-F colonies was 1.4-fold larger, and growing cultures had shorter population-doubling times. PL-MSCs and fetal calf serum (FCS)-MSCs had the same immunophenotype and similar immunomodulation activities. In chondrogenic and osteogenic differentiation assays, PL-MSCs produced 10% more sulfated-glycosaminoglycan (sGAG) and 45% less Ca++ compared with FCS-MSCs, respectively. Replacing chondrogenic medium transforming growth factor-β3 with 20% or 50% PL further increased sGAG production of PL-MSCs by 69% and 95%, respectively, compared with complete chondrogenic medium. Also, Dulbecco's Modified Eagle's Medium high glucose (HG-DMEM) plus 50% PL induced more chondrogenesis compared with HG-DMEM plus 10% FCS and was comparable to complete chondrogenic medium.

Conclusions

This is the first study to assess SF-MSC responses to PL and provides biological support to the hypothesis that PL may be capable of modulating multiple functional aspects of joint resident MSCs with direct access to injured cartilage.  相似文献   

19.
Degenerative joint disease (DJD) is a major cause of reduced athletic function and retirement in equine performers. For this reason, regenerative therapies for DJD have gained increasing interest. Platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) were isolated from a 6-year-old donor horse. MSCs were either used in their native state or after chondrogenic induction. In an initial study, 20 horses with naturally occurring DJD in the fetlock joint were divided in 4 groups and injected with the following: 1) PRP; 2) MSCs; 3) MSCs and PRP; or 4) chondrogenic induced MSCs and PRP. The horses were then evaluated by means of a clinical scoring system after 6 weeks (T1), 12 weeks (T2), 6 months (T3) and 12 months (T4) post injection. In a second study, 30 horses with the same medical background were randomly assigned to one of the two combination therapies and evaluated at T1. The protein expression profile of native MSCs was found to be negative for major histocompatibility (MHC) II and p63, low in MHC I and positive for Ki67, collagen type II (Col II) and Vimentin. Chondrogenic induction resulted in increased mRNA expression of aggrecan, Col II and cartilage oligomeric matrix protein (COMP) as well as in increased protein expression of p63 and glycosaminoglycan, but in decreased protein expression of Ki67. The combined use of PRP and MSCs significantly improved the functionality and sustainability of damaged joints from 6 weeks until 12 months after treatment, compared to PRP treatment alone. The highest short-term clinical evolution scores were obtained with chondrogenic induced MSCs and PRP. This study reports successful in vitro chondrogenic induction of equine MSCs. In vivo application of (induced) MSCs together with PRP in horses suffering from DJD in the fetlock joint resulted in a significant clinical improvement until 12 months after treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号