首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular and Cellular Biochemistry - IRE1 is the most conserved endoplasmic reticulum (ER)-resident stress sensor. Its activation not only splices XBP1 but also participates in a variety of cell...  相似文献   

2.
Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-lipoxygenase (5-LOX) and 15-LOX in vitro, exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology. Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites’ concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC. Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model. Conclusion: Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.  相似文献   

3.
Cybernetic modeling strives to uncover the inbuilt regulatory programs of biological systems and leverage them toward computational prediction of metabolic dynamics. Because of its focus on incorporating the global aims of metabolism, cybernetic modeling provides a systems-oriented approach for describing regulatory inputs and inferring the impact of regulation within biochemical networks. Combining cybernetic control laws with concepts from metabolic pathway analysis has culminated in a systematic strategy for constructing cybernetic models, which was previously lacking. The newly devised framework relies upon the simultaneous application of local controls that maximize the net flux through each elementary flux mode and global controls that modulate the activities of these modes to optimize the overall nutritional state of the cell. The modeling concepts are illustrated using a simple linear pathway and a larger network representing anaerobic E. coli central metabolism. The E. coli model successfully describes the metabolic shift that occurs upon deleting the pta-ackA operon that is responsible for fermentative acetate production. The model also furnishes predictions that are consistent with experimental results obtained from additional knockout strains as well as strains expressing heterologous genes. Because of the stabilizing influence of the included control variables, the resulting cybernetic models are more robust and reliable than their predecessors in simulating the network response to imposed genetic and environmental perturbations.  相似文献   

4.
5.
目的近交繁殖先天性脐疝大鼠获得能稳定遗传的大鼠脐疝模型,大鼠脐疝结构观察及治疗。方法每代大鼠全同胞交配,记录产子数及脐疝情况,分析大鼠脐疝率;取F2代6月龄脐疝雌雄大鼠各6只,其中雌雄各2只进行解剖观察,雌雄大鼠各4只进行外科手术缝合。结果随近交系数增大,大鼠脐疝率升高,F12、F13代大鼠均为脐疝;F1代至F13代雌性大鼠总体脐疝率显著高于雄性大鼠(x2=11.1,P=0.001);雌雄大鼠脐疝结构一致,手术后3~4周痊愈无复发。结论经连续13代全同胞交配获得了遗传性状稳定的大鼠脐疝模型。  相似文献   

6.
To maximize the productivity of engineered metabolic pathway, in silico model is an established means to provide features of enzyme reaction dynamics. In our previous study, Escherichia coli engineered with acrylate pathway yielded low propionic acid titer. To understand the bottleneck behind this low productivity, a kinetic model was developed that incorporates the enzymatic reactions of the acrylate pathway. The resulting model was capable of simulating the fluxes reported under in vitro studies with good agreement, suggesting repression of propionyl-CoA transferase (Pct) by carboxylate metabolites as the main limiting factor for propionate production. Furthermore, the predicted flux control coefficients of the pathway enzymes under steady state conditions revealed that the control of flux is shared between Pct and lactoyl-CoA dehydratase. Increase in lactate concentration showed gradual decrease in flux control coefficients of Pct that in turn confirmed the control exerted by the carboxylate substrate. To interpret these in silico predictions under in vivo system, an organized study was conducted with a lactic acid bacteria strain engineered with acrylate pathway. Analysis reported a decreased product formation rate on attainment of inhibitory titer by suspected metabolites and supported the model.  相似文献   

7.
代谢网络定量分析研究进展   总被引:3,自引:0,他引:3  
魏春  陈宁 《生物技术通讯》2002,13(3):234-238
综述了代谢工程中代谢控制分析、代谢通量分析、生化系统理论、途径分析、控制论模型等定量分析方法的基本理论,以实例说明了这些方法的应用,并对代谢分析方法的发展进行了展望。  相似文献   

8.
9.
5-氨基乙酰丙酸(5-aminolevulinic acid,5-ALA)在医药和农业等领域有着广泛作用,目前主要采用大肠杆菌或谷氨酸棒杆菌以微生物发酵法合成.为了进一步提高谷氨酸棒杆菌合成5-ALA的能力,对其C4代谢途径进行了系统代谢改造.首先分别在谷氨酸棒杆菌中异源表达荚膜红杆菌和沼泽红假单胞菌的5-氨基乙酰丙酸...  相似文献   

10.
In social insects, all castes have characteristic phenotypes suitable for their own tasks and to engage in social behavior. The acquisition of caste-specific phenotypes was a key event in the course of social insect evolution. However, understanding of the genetic basis and the developmental mechanisms that produce these phenotypes is still very limited. In particular, termites normally possess more than two castes with specific phenotypes (i.e. workers, soldiers, and reproductives), but proximate developmental mechanisms are far from being fully understood. In this study, we focused on the pigmentation of the cuticle as a model trait for caste-specific phenotypes, during the molts of each caste; workers, soldiers, presoldiers (intermediate stage of soldiers), and alates (primary reproductives) in Zootermopsis nevadensis. Expression patterns of cuticular tanning genes (members of the tyrosine metabolic pathway) were different among each molt, and high expression levels of several “key genes” were observed during each caste differentiation. For the differentiation of castes with well-tanned cuticles (i.e. soldiers and alates), all focal genes except DDC in the former were highly expressed. On the other hand, high expression levels of yellow and aaNAT were observed during worker and presoldier molts, respectively, but most other genes in the pathway were expressed at low levels. RNA interference (RNAi) of these key genes affected caste-specific cuticular pigmentation, leading to soldiers with yellowish-white heads and pigmented mandibular tips, presoldiers with partly pigmented head cuticles, and alates with the yellow head capsules. These results suggest that the pigmentation of caste-specific cuticles is achieved by the regulation of gene expression in the tyrosine metabolic pathway.  相似文献   

11.
污染土壤中苯并(a)芘的微生物降解途径研究进展   总被引:2,自引:0,他引:2  
苯并(a)芘(BaP)是一种具有强致癌、致畸和致突变的多环芳烃(PAHs)。为了修复BaP污染的土壤,探索其降解途径是很重要的。为此,综述了国内外有关污染土壤中苯并(a)芘的微生物降解情况,对不同真菌、细菌降解苯并(a)芘的能力、代谢途径、共代谢底物以及环境影响因素进行了介绍和比较,提出了苯并(a)芘中间代谢产物的累积及其环境毒性方面的研究是修复苯并(a)芘污染土壤的重要方向。  相似文献   

12.
Odd-chain fatty acids (OCFAs) and their derivatives have attracted increasing attention due to their wide applications in the chemical, fuel, and pharmaceutical industry. However, most natural fatty acids are even-chained, and OCFAs are rare. In this work, a novel pathway was designed and established for de novo synthesis of OCFAs via 3-hydroxypropionic acid (3-HP) as the intermediate in Saccharomyces cerevisiae. First, the OCFAs biosynthesis pathway from 3-HP was confirmed, followed by an optimization of the precursor 3-HP. After combining these strategies, a de novo production of OCFAs at 74.8 mg/L was achieved, and the percentage of OCFAs in total lipids reached 20.3%, reaching the highest ratio of de novo-produced OCFAs. Of the OCFAs produced by the engineered strain, heptadecenoic acid (C17:1) and heptadecanoic acid (C17:0) accounted for 12.1% and 7.6% in total lipid content, respectively. This work provides a new and promising pathway for the de novo bio-production of OCFAs.  相似文献   

13.
14.
Six genes involved in the heparan sulfate and heparin metabolism pathway, DSEL (dermatan sulfate epimerase-like), EXTL1 (exostoses (multiple)-like 1), HS6ST1 (heparan sulfate 6-O-sulfotransferase 1), HS6ST3 (heparan sulfate 6-O-sulfotransferase 3), NDST3 (N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 3), and SULT1A1 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1), were investigated for their associations with muscle lipid composition using cattle as a model organism. Nineteen single nucleotide polymorphisms (SNPs)/multiple nucleotide length polymorphisms (MNLPs) were identified in five of these six genes. Six of these mutations were then genotyped on 246 Wagyu x Limousin F(2) animals, which were measured for 5 carcass, 6 eating quality and 8 fatty acid composition traits. Association analysis revealed that DSEL, EXTL1 and HS6ST1 significantly affected two stearoyl-CoA desaturase activity indices, the amount of conjugated linoleic acid (CLA), and the relative amount of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) in skeletal muscle (P<0.05). In particular, HS6ST1 joined our previously reported SCD1 and UQCRC1 genes to form a three gene network for one of the stearoyl-CoA desaturase activity indices. These results provide evidence that genes involved in heparan sulfate and heparin metabolism are also involved in regulation of lipid metabolism in bovine muscle. Whether the SNPs affected heparan sulfate proteoglycan structure is unknown and warrants further investigation.  相似文献   

15.
苹果酸是一种重要的C4二羧酸,在食品、医药、化工等领域有广泛的应用。本文主要研究羧化途径强化及苹果酸酶失活对大肠杆菌好氧发酵生产苹果酸的影响。首先在大肠杆菌E2中过表达了磷酸烯醇式丙酮酸羧化酶基因ppc,得到菌株E21,苹果酸积累量从0.57 g/L提高到3.83 g/L。随后,分别过表达来自谷氨酸棒杆菌的丙酮酸羧化酶基因pyc和来自琥珀酸放线杆菌的磷酸烯醇式丙酮酸激酶pck基因,相应的工程菌株E21(pTrcpyc)和E21(pTrc-A-pck)分别产6.04和5.01 g/L苹果酸,得率分别达到0.79和0.65 mol/mol葡萄糖。敲除E21中的苹果酸酶基因mae A和mae B,苹果酸产量也显著提高了36%,达到5.21 g/L,得率为0.62 mol/mol。然而,在过表达pyc的基础上敲除苹果酸酶基因并不能进一步提高苹果酸的产量。经过摇瓶发酵条件的初步优化,菌株E21(pTrcpyc)生产12.45 g/L苹果酸,得率为0.84 mol/mol,达到理论得率的63.2%。  相似文献   

16.
Protein degradation in isolated rat hepatocytes, as measured by the release of [14C]valine from pre-labelled protein, is partly inhibited by a physiologically balanced mixture of amino acids. The inhibition is largely due to the seven amino acids leucine, phenylalanine, tyrosine, tryptophan, histidine, asparagine and glutamine.When the amino acids are tested individually at different concentrations, asparagine and glutamine are the strongest inhibitors. However, when various combinations are tested, a mixture of the first five amino acids as well as a combination of leucine and asparagine inhibit protein degradation particularly strongly.The inhibition brought about by asparagine plus leucine is not additive to the inhibition by propylamine, a lysosomotropic inhibitor; thus indicating that the amino acids act exclusively upon the lysosomal pathway of protein degradation.Following a lag of about 15 min the effect of asparagine plus leucine is maximal and equal to the effect of propylamine, suggesting that their inhibition of the lysosomal pathway is complete as well as specific.Degradation of endocytosed 125I-labelled asialofetuin is not affected by asparagine plus leucine, indicating that the amino acids do not affect lysosomes directly, but rather inhibit autophagy at a step prior to the fusion of autophagic vacuoles with lysosomes.The aminotransferase inhibitor, aminooxyacetate, does not prevent the inhibitory effect of any of the amino acids, i.e. amino acid metabolites are apparently not involved.  相似文献   

17.
Corosolic acid (CRA), a constituent of banaba leaves, has been reported to have anti-inflammatory and hypoglycemic activities. The aim of this study was to determine the effects of CRA on metabolic risk factors including obesity, hypertension, hyperinsulinemia, hyperglycemia, and hyperlipidemia together with oxidative stress and inflammation, all of which are characteristic of the SHR/NDmcr-cp (cp/cp) (SHR-cp) rat, an animal model of metabolic syndrome. Six-week-old male SHR-cp rats were fed a high fat diet containing 0.072% CRA for 14 weeks. Treatment with CRA lowered blood pressure, which was elevated in control animals, by 10% after 8 weeks, and serum free fatty acids by 21% after 2 weeks. CRA treatment resulted in decreases in the levels of the oxidative stress markers thiobarbituric acid-reactive substances and 8-hydroxydeoxyguanosine by 27% and 59%, respectively, after 2 weeks. CRA treatment also reduced the levels of myeloperoxidase markers, 3-nitrotyrosine and 3-chlorotyrosine by 38% and 39%, respectively, after 10 weeks, and tended to decrease the levels of high sensitivity C-reactive protein, a marker of inflammation, after 6 weeks. However, CRA had no effect on weight gain or hyperglycemia. These results demonstrate that CRA can ameliorate hypertension, abnormal lipid metabolism, and oxidative stress as well as the inflammatory state in SHR-cp rats. This implies that CRA can be beneficial for preventing atherosclerosis-related diseases that are an increasing health care problem worldwide.  相似文献   

18.
In this paper we present a method that allows dynamic flux analysis without a priori kinetic knowledge. This method was developed and validated using the pulse-feeding experimental data obtained in our previous study (Matsuda et al., 2005), in which incorporation of exogenously applied l-phenylalanine-d(5) into seven phenylpropanoid metabolites in potato tubers was determined. After identification of the topology of the metabolic network of these biosynthetic pathways, the system was described by dynamic mass balances in combination with power-law kinetics. After the first simulations, some reactions were removed from the network because they were not contributing significantly to network behaviour. As a next step, the exponents of the power-law kinetics were identified and then kept at fixed values during further analysis. The model was tested for statistical reliability using Monte Carlo simulations. Most fluxes could be identified with high accuracy. The two test cases, control and after elicitation, were clearly distinguished, and with elicitation fluxes to N-p-coumaroyloctopamine (pCO) and N-p-coumaroyltyramine (pCT) increased significantly, whereas those for chlorogenic acid (CGA) and p-coumaroylshikimate decreased significantly. According to the model, increases in the first two fluxes were caused by induction/derepression mechanisms. The decreases in the latter two fluxes were caused by decreased concentrations of their substrates, which in turn were caused by increased activity of the pCO- and pCT-producing enzymes. Flux-control analysis showed that, in most cases, flux control was changed after application of elicitor. Thus the results revealed potential targets for improving actions against tissue wounding and pathogen attack.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号