首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 262 毫秒
1.
Xiao Chen  Wei Shi  Chao Chen 《Genomics》2019,111(4):598-606
Circular RNAs (circRNAs) are non-coding RNAs newly identified and play important roles in RNA regulation. The mechanism and function of circRNAs have been reported in some species. However, little is known regarding circRNAs in honey bees. In this study, we analyzed circRNAs through bioinformatics, and predicted 12,211 circRNAs in the ovary of honey bee queens. 1340, 175 and 100 circRNAs were differentially expressed in comparisons of egg-laying queens vs virgin queens, egg-laying inhibited queens vs egg-laying queens and egg-laying recovery queens vs egg-laying inhibited queens. Further, functional annotation of differentially expressed circRNAs revealed several pathways that are closely related to ovary activation and oviposition, including insulin secretion and calcium signaling pathways. Moreover, the potential interactions among circRNAs, miRNAs, lncRNAs and mRNAs were investigated. Ame_circ_0005197 and ame_circ_0016640 were observed to sponge several reproductive related miRNAs. These findings demonstrate that circRNAs have potential effects in ovary activation and oviposition of honey bees.  相似文献   

2.
3.
《Genomics》2022,114(4):110418
Circular RNAs (circRNAs) are a new type of regulatory RNAs, which have been identified to play critical role in various tumors. However, the profiles and roles of circRNAs in cervical cancer (CCa) have not been fully understood and need to be further explored. In the present study, we performed circRNA array and mRNA-sequencing (mRNA-Seq) to profile the differentially expressed circRNAs and mRNAs in CCa tissues. A total of 397 differentially expressed circRNAs and 2138 differentially expressed mRNAs were detected, respectively. Subsequently, a circRNA-miRNA-mRNA regulatory network was constructed and indicated that hsa_circ_0026377 was downregulated in CCa. Overexpression of hsa_circ_0026377 inhibited HeLa and SiHa cells proliferation, migration and invasion. Collectively, this study provided new insights into the circRNA profiles in CCa and suggested that hsa_circ_0026377 might play important roles in CCa development.  相似文献   

4.
Gastric cancer is the fourth leading cause of cancer-related mortality and one of the most commonly diagnosed malignancies worldwide. Gastric adenocarcinoma (GAC) accounts for the majority of gastric cancer cases. Circular RNAs (circRNAs) have been shown to be associated with carcinogenesis and cancer progression. This research aims to investigate GAC-associated circRNAs and the underlying mechanisms of circRNA-miRNA-mRNA networks in the development and progression of GAC. Differentially expressed miRNAs and mRNAs (DEMs and DEGs) were identified in Gene Expression Omnibus (GEO) microarray datasets using the R package Limma. A microarray meta-analysis was performed to identify potential GAC-associated circRNAs with high statistical power, resulting in 13 up-regulated and 19 down-regulated circRNAs. CircRNA-miRNA-mRNA networks were constructed by combining predicted and experimentally validated databases and considering differentially expressed miRNAs and mRNAs. The constructed ceRNA networks revealed the potential regulatory effect of hsa_circ_0002019 and hsa_circ_0074736 on key survival-related genes. The expression levels of these two circRNAs were measured in plasma samples from GAC patients and healthy controls using SYBR Green-based real-time PCR. Axon guidance, cellular senescence, AGE-RAGE signaling pathway in diabetic complications, and AMPK signaling pathway were among the major significant (P-value <0.05) enriched pathways of "main mRNAs" in the constructed ceRNA networks. In conclusion, we identified strongly correlated circRNAs and their likely mechanisms of action in GAC, which may improve the knowledge of regulatory networks underlying GAC formation and contribute to developing better strategies for early diagnosis, prognosis, and treatment.  相似文献   

5.
6.
7.
8.
9.
Circular RNAs (circRNAs) make up a large class of non‐coding RNAs and play important roles in the pathology of a variety of diseases. However, their roles in pulmonary macrophage polarization after sepsisinduced lung injury is unknown. In this study, mice were divided into two groups: Sham control group and cecal ligation and puncture (CLP)‐induced ALI group. Macrophages were isolated from lung homogenates 24 hours after SCLP/CLP. We started with RNA‐seq of circRNA changes in macrophages and validated by RT‐PCR in the following experiments. A total of 4318 circRNAs were detected in the two groups. Of these, 11 and 126 circRNAs were found to be significantly upregulated and downregulated, respectively, compared to the control (p≤0.05, Fold Change ≥2). Differentially expressed circRNAs with a high foldchange (fold‐change >4, P<0.05) were selected for validation by qRT‐PCR, 10 of which were verified. Furthermore, the most differentially expressed circRNAs within all the comparisons were annotated in detail with circRNA/miRNA interaction information using miRNA target prediction software. The network of circRNA‐miRNA‐mRNA was illustrated by cytoscape software. Gene ontology analyses indicated the upregulated circRNAs were involved in the multiple biological functions such as regulation of mitochondrion distribution and Notch binding, while the down‐regulated circRNAs mainly involved in the biological process as histone H3K27 methylation. KEGG pathway analysis revealed TGF‐beta signaling pathway was related to the upregulated circRNAs. The present study provides a novel insight into the roles of circRNAs in pulmonary macrophage differentiation and polarization post septic lung injury.  相似文献   

10.
11.
Liver cancer is the sixth most prevalent cancer, and the third most frequent cause of cancer-related deaths. Circular RNAs (circRNAs), a kind of special endogenous ncRNAs, have been coming back to the forefront of cancer genomics research. In this study, we used a systems biology approach to construct and analyze the circRNA molecular regulatory networks in the context of liver cancer. We detected a total of 127 differentially expressed circRNAs and 3,235 differentially expressed mRNAs. We selected the top-5 upregulated circRNAs to construct a circRNA-miRNA-mRNA network. We enriched the pathways and gene ontology items and determined their participation in cancer-related pathways such as p53 signaling pathway and pathways involved in angiogenesis and cell cycle. Quantitative real-time PCR was performed to verify the top-five circRNAs. ROC analysis showed circZFR, circFUT8, circIPO11 could significantly distinguish the cancer samples, with an AUC of 0.7069, 0.7575, and 0.7103, respectively. Our results suggest the circRNA-miRNA-mRNA network may help us further understand the molecular mechanisms of tumor progression in liver cancer, and reveal novel biomarkers and therapeutic targets.  相似文献   

12.
As a novel kind of non‐coding RNA, circular RNAs (circRNAs) were involved in various biological processes. However, the role of circRNAs in the developmental process of chronic obstructive pulmonary disease (COPD) is still unclear. In the present study, by using a cell model of COPD in primary human small airway epithelial cells (HSAECs) treated with or without cigarette smoke extract (CSE), we uncovered 4,379 previously unknown circRNAs in human cells and 903 smoke‐specific circRNAs, with the help of RNA‐sequencing and bioinformatic analysis. Moreover, 3,872 up‐ and 4,425 down‐regulated mRNAs were also identified under CSE stimulation. Furthermore, a putative circRNA‐microRNA‐mRNA network was constructed for in‐depth mechanism exploration, which indicated that differentially expressed circRNAs could influence expression of some key genes that participate in response to pentose phosphate pathway, ATP‐binding cassette (ABC) transporters, glycosaminoglycan biosynthesis pathway and cancer‐related pathways. Our research indicated that cigarette smoke had an influence on the biogenesis of circRNAs and mRNAs. CircRNAs might be involved in the response to CSE in COPD through the circRNA‐mediated ceRNA networks.  相似文献   

13.
14.
15.
16.
Gastric cancer (GC) remains one of the most prevalent types of malignancies worldwide, and also one of the most reported lethal tumor-related diseases. Circular RNAs (circRNAs) have been certified to be trapped in multiple aspects of GC pathogenesis. Yet, the mechanism of this regulation is mostly undefined. This research is designed to discover the vital circRNA-microRNA (miRNA)-messenger RNA (mRNA) regulatory network in GC. Expression profiles with diverse levels including circRNAs, miRNAs, and mRNAs were all determined using microarray public datasets from Gene Expression Ominous (GEO). The differential circRNAs expressions were recognized against the published robust rank aggregation algorithm. Besides, a circRNA-based competitive endogenous RNA (ceRNA) interaction network was visualized via Cytoscape software (version 3.8.0). Functional and pathway enrichment analysis associated with differentially expressed targeted mRNAs were conducted using Cytoscape and an online bioinformatics database. Furthermore, an interconnected protein–protein interaction association network which consisted of 51 mRNAs was predicted, and hub genes were screened using STRING and CytoHubba. Then, several hub genes were chosen to explore their expression associated with survival rate and clinical stage in GEPIA and Kaplan-Meier Plotter databases. Finally, a carefully designed circRNA-related ceRNA regulatory subnetwork including four circRNAs, six miRNAs, and eight key hub genes was structured using the online bioinformatics tool.  相似文献   

17.
18.
New perinatal care technologies have improved the survival rate of preterm neonates, but the prevalence of bronchopulmonary dysplasia (BPD), one of the most intractable problems in neonatal intensive care unit (NICU), remains unchanged. In present study, high-throughput sequencing (HTS) was performed to detect the expression profiles of long noncoding RNAs (lncRNAs), messenger RNAs (mRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) in hyperoxia-induced BPD mouse model. Significant differentially expressed RNAs were selected and clustered between the BPD group and the control group. The results revealed that expressions of 1778 lncRNAs, 1240 mRNAs, 97 circRNAs, and 201 miRNAs were significantly altered in the BPD group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to predict the potential functions of differentially expressed RNAs. lncRNA-mRNA and circRNA-miRNA coexpression networks were constructed to detect their association with the pathogenesis of BPD. Our study provides a systematic perspective on the potential function of RNAs during BPD.  相似文献   

19.
《Genomics》2019,111(6):1192-1200
IntroductionIt has been reported that a wide range of long non-coding RNAs (lncRNAs) are implicated in numerous diseases such as tumor, cardiopathy and neurological disorders. Identifying the differentially expressed (DE) profile of lncRNAs in cervical spondylotic myelopathy (CSM) is essential to understand the mechanisms of CSM.MethodsMicroarray assay, quantitative real-time PCR (qRT-PCR) and bioinformatics analysis were employed to reveal the DE profile and potential functions of lncRNAs in CSM.ResultsMicroarray analysis displayed the DE profiles of lncRNAs and mRNAs in rats between the CSM group and the control (CON) group. Thereinto, 1266 DE lncRNAs (738 up-regulation and 528 down-regulation) and 847 mRNAs (487 up-regulation and 360 down-regulation) with >1.1 fold change (FC) were finally identified. Moreover, 17 lncRNAs (13 up-regulation and 4 down-regulation) and 18 mRNAs (13 up-regulation and 5 down-regulation) were found deregulated by >2 FC. Further bioinformatics analysis showed the most remarkable biological processes among up-regulated RNAs contain cellular response to interferon-beta, inflammatory response and innate immune response, which may involve in CSM. Besides, related DE mRNAs of 17 DE lncRNAs in the genome were related to signaling pathway about NOD-like receptor, TNF, and apoptosis. In addition, a co-expression network of lncRNA-mRNA was established for analyzing the biological roles of lncRNAs. Among these, we found a ceRNA network related to CSM. Finally, the expressions of the DE lncRNAs and ceRNA network confirmed by qRT-PCR were in agreement with microarray data.ConclusionsOur study revealed the DE profiles of lncRNAs and mRNAs for CSM. Those dysregulated RNAs may represent potential therapeutic targets of CSM for further study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号