首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Brain ischemic tolerance is a protective mechanism induced by a preconditioning stimulus, which prepare the tissue against harmful insults. Preconditioning with N-methyl-d-aspartate (NMDA) agonists induces brain tolerance and protects it against glutamate excitotoxicity. Recently, the glycine transporters type 1 (GlyT-1) have been shown to potentiate glutamate neurotransmission through NMDA receptors suggesting an alternative strategy to protect against glutamate excitotoxicity. Here, we evaluated the preconditioning effect of sarcosine pre-treatment, a GlyT-1 inhibitor, in rat hippocampal slices exposed to ischemic insult. Sarcosine (300mg/kg per day, i.p.) was administered during seven consecutive days before induction of ischemia in hippocampus by oxygen/glucose deprivation (OGD). To access the damage caused by an ischemic insult, we evaluated cells viability, glutamate release, nitric oxide (NO) production, lactate dehydrogenase (LDH) levels, production of reactive oxygen species (ROS), and antioxidant enzymes as well as the impact of oxidative stress in the tissue. We observed that sarcosine reduced cell death in hippocampus submitted to OGD, which was confirmed by reduction on LDH levels in the supernatant. Cell death, glutamate release, LDH levels and NO production were reduced in sarcosine hippocampal slices submitted to OGD when compared to OGD controls (without sarcosine). ROS production was reduced in sarcosine hippocampal slices exposed to OGD, although no changes were found in antioxidant enzymes activities. This study demonstrates that preconditioning with sarcosine induces ischemic tolerance in rat hippocampal slices submitted to OGD.  相似文献   

2.
We evaluated oxidative stress associated with a model of experimental epilepsy. Male Wistar rats were injected i.p. with 150 mg/kg convulsant 3-mercaptopropionic acid and decapitated in two stages: during seizures or in the post-seizure period. Spontaneous chemiluminescence, levels of thiobarbituric acid reactive substances, total antioxidant capacity and antioxidant enzyme activities were measured in cerebellum, hippocampus, cerebral cortex and striatum. In animals killed at seizure, increases of 42% and 90% were observed in spontaneous chemiluminescence of cerebellum and cerebral cortex homogenates, respectively, accompanied by a 25% increase in cerebral cortex levels of thiobarbituric acid reactive substances. In the post-seizure stage, emission completely returned to control levels in cerebral cortex and partly in cerebellum, thus showing oxidative stress reversibility in time. Hippocampus and striatum seemed less vulnerable areas to oxidative damage. A 30% decrease in glutathione peroxidase activity was only observed in cerebral cortex during seizures, while catalase and superoxide dismutase remained unchanged in all four areas during either stage. Likewise, total antioxidant capacity was unaffected in any of the studied areas. It is suggested that oxidative stress in this model of epilepsy arises from an increase in oxidant species rather than from depletion of antioxidant defences.  相似文献   

3.
We previously reported that inhibition of Rho-kinase (ROCK) by hydroxyl fasudil improves cognitive deficit and neuronal damage in rats with chronic cerebral ischemia (Huang et al., Cell Mol Neurobiol 28:757–768, 2008). In this study, fasudil mesylate (FM) was investigated for its neuroprotective potential in rats with ischemia following middle cerebral artery occlusion (MCAO) and reperfusion. The effect of fasudil mesylate was also studied in rat brain cortical and hippocampal slices treated with oxygen-glucose deprivation (OGD) injury. Gross anatomy showed that cerebral infarct size, measured with 2,3,5-triphenyltetrazolium chloride (TTC) staining, was significantly smaller in the FM-treated than in the non-FM-treated ischemic rats. In the brain regions vulnerable to ischemia of ischemic rats, fasudil mesylate was also found to significantly restore the enzyme protein expression level of endothelial nitric oxide synthase (eNOS), which was decreased in ischemia. However, it remarkably reduced the protein synthesis of inducible nitric oxide synthase (iNOS) that was induced by ischemia and reperfusion. In rat brain slices treated with OGD injury, fasudil mesylate increased the neuronal cell viability by 40% for cortex and by 61% for hippocampus, respectively. Finally, in the presence of OGD and fasudil mesylate, superoxide dismutase (SOD) activity was increased by 50% for cortex and by 58% for hippocampus, compared to OGD only group. In conclusion, our in vivo study showed that fasudil mesylate not only decreased neurological deficit but also reduced cerebral infarct size, possibly and at least partially by augmenting eNOS protein expression and inhibiting iNOS protein expression after ischemia-reperfusion. Xian-Ju Huang contributed equally to this article.  相似文献   

4.
Organotellurium compounds have been synthesized since 1840, but pharmacological and toxicological studies about them are still incipient. Therefore, the objective of this study was to verify the effect of acute administration of the organochalcogen 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on some parameters of oxidative stress in the brain of 30-day-old rats. Animals were treated intraperitoneally with a single dose of the organotellurium (125, 250, or 500 μg/kg body weight) and sacrificed 60 min after the injection. The cerebral cortex, the hippocampus, and the cerebellum were dissected and homogenized in KCl. Afterward, thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD), nitric oxide (NO) formation, and hydroxyl radical production were measured in the brain. The organotellurium enhanced TBARS in the cerebral cortex and the hippocampus, and increased protein damage (carbonyl) in the cerebral cortex and the cerebellum. In contrast, the compound provoked a reduced loss of thiol groups measured by the sulfhydryl assay in all the tissues studied. Furthermore, the activity of the antioxidant enzyme CAT was reduced by the organochalcogen in the cerebral cortex and the cerebellum, and the activity of SOD was inhibited in all the brain tissues. Moreover, NO production was increased in the cerebral cortex and the cerebellum by this organochalcogen, and hydroxyl radical formation was also enhanced in the cerebral cortex. Our findings indicate that this organotellurium compound induces oxidative stress in the brain of rats, corroborating that this tissue is a potential target for organochalcogen action.  相似文献   

5.
Selenium (Se) is an essential mineral for mammals. It is a nutrient related to the complex metabolic and enzymatic functions. Although Se has important physiological functions in the cells, organic compounds of Se can be extremely toxic, and may affect the central nervous system. This study aims to investigate the effect of the chronic treatment with the vinyl chalcogenide 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one on some parameters of oxidative stress in the brain of rats. Animals received the vinyl chalcogenide (125, 250 or 500 μg/kg body weight) intraperitoneally once a day during 30 days. The cerebral cortex, the hippocampus, and the cerebellum were dissected and homogenized in KCl. Afterward, thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured in the brain. Results showed that the organoselenium enhanced TBARS in the cerebral cortex of rats but the compound was not able to change carbonyl levels. Furthermore, the organoselenium reduced thiol groups measured by the sulfhydryl assay in all tissues studied. The activity of the antioxidant enzyme CAT was increased by the organochalcogen in the cerebral cortex and in the cerebellum, and the activity of SOD was increased in the hippocampus. On the other hand, the activity of the antioxidant enzyme GPx was reduced in all brain structures. Our findings indicate that this organoselenium compound induces oxidative stress in different brain regions of rats, corroborating to the fact that this tissue is a potential target for organochalcogen action.  相似文献   

6.
Tyrosine levels are abnormally elevated in tissues and body fluids of patients with inborn errors of tyrosine metabolism. Tyrosinemia type II, which is caused by tyrosine aminotransferase deficiency, provokes eyes, skin, and central nervous system disturbances in affected patients. However, the mechanisms of brain damage are still poorly known. Considering that studies have demonstrated that oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia, in the present study we investigated the effects of antioxidant treatment (NAC and DFX) on DNA damage and oxidative stress markers induced by chronic administration of l-tyrosine in cerebral cortex, hippocampus, and striatum of rats. The results showed elevated levels of DNA migration, and thus DNA damage, after chronic administration of l-tyrosine in all the analyzed brain areas, and that the antioxidant treatment was able to prevent DNA damage in cerebral cortex and hippocampus. However, the co-administration of NAC plus DFX did not prevent the DNA damage in the striatum. Moreover, we found a significant increase in thiobarbituric acid-reactive substances (TBA-RS) and DCFH oxidation in cerebral cortex, as well as an increase in nitrate/nitrite levels in the hippocampus and striatum. Additionally, the antioxidant treatment was able to prevent the increase in TBA-RS levels and in nitrate/nitrite levels, but not the DCFH oxidation. In conclusion, our findings suggest that reactive oxygen and nitrogen species and oxidative stress can play a role in DNA damage in this disorder. Moreover, NAC/DFX supplementation to tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the current treatment of this disease.  相似文献   

7.
High levels of phenylalanine (Phe) are the biochemical hallmark of phenylketonuria (PKU), a neurometabolic disorder clinically characterized by severe mental retardation and other brain abnormalities, including cortical atrophy and microcephaly. Considering that the pathomechanisms leading to brain damage and particularly the marked cognitive impairment in this disease are poorly understood, in the present study we investigated the in vitro effect of Phe, at similar concentrations as to those found in brain of PKU patients, on important parameters of oxidative stress in the hippocampus and cerebral cortex of developing rats. We found that Phe induced in vitro lipid peroxidation (increase of TBA-RS values) and protein oxidative damage (sulfhydryl oxidation) in both cerebral structures. Furthermore, these effects were probably mediated by reactive oxygen species, since the lipid oxidative damage was totally prevented by the free radical scavengers α-tocopherol and melatonin, but not by L-NAME, a potent inhibitor of nitric oxide synthase. Accordingly, Phe did not induce nitric oxide synthesis, but significantly decreased the levels of reduced glutathione (GSH), the major brain antioxidant defense, in hippocampus and cerebral cortex supernatants. Phe also reduced the thiol groups of a commercial GSH solution in a cell-free medium. We also found that the major metabolites of Phe catabolism, phenylpyruvate, phenyllactate and phenylacetate also increased TBA-RS levels in cerebral cortex, but to a lesser degree. The data indicate that Phe elicits oxidative stress in the hippocampus, a structure mainly involved with learning/memory, and also in the cerebral cortex, which is severely damaged in PKU patients. It is therefore presumed that this pathomechanism may be involved at least in part in the severe cognitive deficit and in the characteristic cortical atrophy associated with dysmyelination and leukodystrophy observed in this disorder.  相似文献   

8.
Although it is well known that regular exercise may promote neuroprotection, the mechanisms underlying this effect are still not fully understood. We investigated if swim training promotes neuroprotection by potentiating antioxidant pathways, thereby decreasing the effects of oxidative stress on glutamate and nitric oxide release. Male Wistar rats (n=36) were evenly randomized into a trained group (TRA) (5 days/week, 8 weeks, 30 min) and a sedentary group (SED). Forty‐eight hours after the last session of exercise, animals were killed and brain was collected for in vitro ischemia. Cortical slices were divided into two groups: a group in which oxidative stress was induced by oxygen and glucose deprivation (OGD), and a group of non‐deprived controls (nOGD). Interestingly, exercise by itself increased superoxide dismutase activity (nOGD, SED vs. TRA animals) with no effect on pro‐oxidative markers. In fact, TRA‐OGD slices showed lowered levels of lactate dehydrogenase when compared with SED‐OGD controls, reinforcing the idea that exercise affords a neuroprotective effect. We also demonstrated that exercise decreased glutamate and nitrite release as well as lipid membrane damage in the OGD cortical slices. Our data suggest that under conditions of metabolic stress, swim training prevents oxidative damage caused by glutamate and nitric oxide release.  相似文献   

9.
We studied the effect of chronic caffeine on parameters related to oxidative stress in different brain regions of stressed and non-stressed rats. Wistar rats were divided into three groups: control (receiving water), caffeine 0.3 g/L and caffeine 1.0 g/L (in the drinking water). These groups were subdivided into non-stressed and stressed (repeated restraint stress during 40 days). Lipid peroxide levels and the total radical-trapping potential were assessed, as well as antioxidant enzyme activities superoxide dismutase, gluthatione peroxidase, and catalase in hippocampus, striatum and cerebral cortex. Results showed interactions between stress and caffeine, especially in the cerebral cortex, since caffeine increased the activity of some antioxidant enzymes, but not in stressed animals. We concluded that chronic administration of caffeine led, in some cases, to increased activity of antioxidant enzymes. However, these effects were not observed in the stressed animals.  相似文献   

10.
Hypobaric hypoxia induces oxidative stress in rat brain   总被引:7,自引:0,他引:7  
High altitude exposure results in decreased partial pressure of oxygen and an increased formation of reactive oxygen and nitrogen species (RONS), which causes oxidative damage to lipids, proteins and DNA. Exposure to high altitude appears to decrease the activity and effectiveness of antioxidant enzyme system. The antioxidant system is very less in brain tissue and is very much susceptible to hypoxic stress. The aim of the present study was to investigate the time dependent and region specific changes in cortex, hippocampus and striatum on oxidative stress markers on chronic exposure to hypobaric hypoxia. The rats were exposed to simulated high altitude equivalent to 6100 m in animal decompression chamber for 3 and 7 days. Results indicate an increase in oxidative stress as seen by increase in free radical production, nitric oxide level, lipid peroxidation and lactate dehydrogenase levels. The magnitude of increase in oxidative stress was more in 7 days exposure group as compared to 3 days exposure group. The antioxidant defence system such as reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and reduced/oxidized glutathione (GSH/GSSG) levels were significantly decreased in all the three regions. The observation suggests that the hippocampus is more susceptible to hypoxia than the cortex and striatum. It may be concluded that hypoxia differentially affects the antioxidant status in the cortex, hippocampus and striatum.  相似文献   

11.
The purpose of this study was to determine if mild hypothermia alters mitotic activity in normal and post-ischemic hippocampal slices. (1) Normothermic oxygen–glucose deprivation (OGD 60 min) increased mitotic activity in the hippocampus up to 4d post-OGD. (2) Mild hypothermia (33 °C for 24 h) initiated after OGD stress reduced mitotic activity compared to normothermic controls up to 8 d post-OGD. (3) Mild hypothermia stimulated mitotic activity in normal (no OGD stress) hippocampus up to 24 h post-hypothermia. In conclusion, mild transient hypothermia can increase or decrease mitotic activity depending upon the experimental condition of the hippocampal slices when hypothermia is induced.  相似文献   

12.
The hippocampus is one of the earliest and most affected regions in Alzheimer’s disease (AD), followed by the cortex while the cerebellum is largely spared. Importantly, endothelial dysfunction is a common feature of cerebral blood vessels in AD. In this study, we sought to determine if regional heterogeneity of cerebral microvessels might help explain the susceptibility of the hippocampus and cortex as compared to the cerebellum. We isolated microvessels from wild type mice from the cerebellum, cortex, and hippocampus to characterize their vascular phenotype. Superoxide anion was significantly higher in microvessels isolated from the cortex and hippocampus as compared to the cerebellum. Importantly, protein levels of NADPH oxidase (NOX)-2 and NOX-4 were significantly higher in the cortical and hippocampal microvessels as compared to microvessels from the cerebellum. In addition, expression of manganese superoxide dismutase protein was significantly lower in microvessels from the cortex and hippocampus as compared to cerebellum while other antioxidant enzymes were unchanged. There was no difference in eNOS protein expression between the microvessels of the three brain regions; however, bioavailability of tetrahydrobiopterin (BH4), an essential cofactor for eNOS activity, was significantly reduced in microvessels from the hippocampus and cortex as compared to the cerebellum. Higher levels of superoxide and reduced tetrahydrobiopterin bioavailability may help explain the vulnerability of the hippocampus and cortical microvessels to oxidative stress and development of endothelial dysfunction.  相似文献   

13.
Accumulating evidence has reported that microRNA‐144‐3p (miR‐144‐3p) is highly related to oxidative stress and apoptosis. However, little is known regarding its role in cerebral ischemia/reperfusion‐induced neuronal injury. Herein, our results showed that miR‐144‐3p expression was significantly downregulated in neurons following oxygen–glucose deprivation and reoxygenation (OGD/R) treatment. Overexpression of miR‐144‐3p markedly reduced cell viability, promoted cell apoptosis, and increased oxidative stress in neurons with OGD/R treatment, whereas downregulation of miR‐144‐3p protected neurons against OGD/R‐induced injury. Brahma‐related gene 1 (Brg1) was identified as a potential target gene of miR‐144‐3p. Moreover, downregulation of miR‐144‐3p promoted the nuclear translocation of nuclear factor erythroid 2‐related factor 2 (Nrf2) and increased antioxidant response element (ARE) activity. However, knockdown of Brg1 significantly abrogated the neuroprotective effects of miR‐144‐3p downregulation. Overall, our results suggest that miR‐144‐3p contributes to OGD/R‐induced neuronal injury in vitro through negatively regulating Brg1/Nrf2/ARE signaling.  相似文献   

14.
Increased oxidative stress and energy metabolism deficit have been regarded as an important underlying cause for neuronal damage induced by cerebral ischemia/reperfusion (I/R) injury. In this study, we investigated the oxidative mechanisms underlying the neuroprotective effects of resveratrol, a potent polyphenol antioxidant found in grapes, on structural and biochemical abnormalities in rats subjected to global cerebral ischemia. Experimental model of transient global cerebral ischemia was induced in Wistar rats by the four vessel occlusion method for 10 min and followed by different periods of reperfusion. Nissl and fluoro jade C stained indicated extensive neuronal death at 7 days after I/R. These findings were preceded by a rapid increase in the generation of reactive oxygen species (ROS), nitric oxide (NO), lipid peroxidation, as well as by a decrease in Na+K+-ATPase activity and disrupted antioxidant defenses (enzymatic and non-enzymatic) in hippocampus and cortex. Administrating resveratrol 7 days prior to ischemia by intraperitoneal injections (30 mg/kg) significantly attenuated neuronal death in both studied structures, as well as decreased the generation of ROS, lipid peroxidation and NO content. Furthermore, resveratrol brought antioxidant and Na+K+-ATPase activity in cortex and hippocampus back to normal levels. These results support that resveratrol could be used as a preventive, or therapeutic, agent in global cerebral ischemia and suggest that scavenging of ROS contributes, at least in part, to resveratrol-induced neuroprotection.  相似文献   

15.
Cerebral ischemia/reperfusion (I/R) typically occurs after mechanical thrombectomy to treat ischemic stroke, generation of reactive oxygen species (ROS) after reperfusion may result in neuronal insult, ultimately leading to disability and death. Regulated in development and DNA damage responses 1 (REDD1) is a conserved stress response protein under various pathogenic conditions. Recent research confirms the controversial role of REDD1 in injury processes. Nevertheless, the role of REDD1 in cerebral I/R remains poorly defined. In the current study, increased expression of REDD1 was observed in neurons exposed to simulated I/R via oxygen glucose deprivation/reoxygenation (OGD/R) treatment. Knockdown of REDD1 enhanced OGD/R-inhibited cell viability, but suppressed lactate dehydrogenase (LDH) release in neurons upon OGD/R. Simultaneously, suppression of REDD1 also antagonized OGD/R-evoked cell apoptosis, Bax expression, and caspase-3 activity. Intriguingly, REDD1 depression abrogated neuronal oxidative stress under OGD/R condition by suppressing ROS, MDA generation, and increasing antioxidant SOD levels. Further mechanism analysis corroborated the excessive activation of autophagy in neurons upon OGD/R with increased expression of autophagy-related LC3 and Beclin-1, but decreased autophagy substrate p62 expression. Notably, REDD1 inhibition reversed OGD/R-triggered excessive neuronal autophagy. More importantly, depression of REDD1 also elevated the expression of p-mTOR. Preconditioning with mTOR inhibitor rapamycin engendered not only a reduction in mTOR activation, but also a reactivation of autophagy in REDD1 knockdown-neurons upon OGD/R. In addition, blocking the mTOR pathway muted the protective roles of REDD1 inhibition against OGD/R-induced neuron injury and oxidative stress. Together these data suggested that REDD1 may regulate I/R-induced oxidative stress injury in neurons by mediating mTOR-autophagy signaling, supporting a promising therapeutic strategy against brain ischemic diseases.  相似文献   

16.
Lemur tyrosine kinase-2 (LMTK2), a newly identified serine/threonine kinase, is a potential regulator of cell survival and apoptosis. However, little is known about its role in regulating neuronal survival during cerebral ischemia/reperfusion injury. The present study aimed to explore the potential function of LMTK2 in regulating neuronal survival using an in vitro model of oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury. Herein, we found that LMTK2 expression was markedly decreased in neurons following OGD/R exposure. Gain-of-function experiments demonstrated that LMTK2 overexpression significantly improved the viability and reduced apoptosis of neurons with OGD/R-induced injury. Moreover, LMTK2 overexpression reduced the production of reactive oxygen species (ROS) in OGD/R-exposed neurons. Notably, our results elucidated that LMTK2 overexpression reinforced the activation of nuclear factor erythroid 2-related factor (Nrf2)/antioxidant response element (ARE) antioxidant signaling associated with increased glycogen synthase kinase-3β (GSK-3β) phosphorylation. GSK-3β inhibition by its specific inhibitor significantly reversed LMTK2-inhibition-linked apoptosis and ROS production. Additionally, silencing Nrf2 partially reversed the LMTK2-overexpression-mediated neuroprotective effect in OGD/R-injured neurons. Taken together, our results demonstrated that LMTK2 overexpression alleviated OGD/R-induced neuronal apoptosis and oxidative damage by enhancing Nrf2/ARE antioxidant signaling via modulation of GSK-3β phosphorylation. Our study suggests LMTK2 is a potential target for neuroprotection during cerebral ischemia/reperfusion.  相似文献   

17.
Ptychopetalum olacoides (PO) roots are used by Amazonian peoples to prepare traditional remedies for treating various central nervous system conditions in which free radicals are likely to be implicated. Following the identification of PO ethanol extract (POEE) free-radical scavenging properties in vitro, the aim of this study was to verify the in vivo antioxidant effect of POEE. Aging mice (14 months) were treated (i.p.) with saline, DMSO (20%) or POEE (100mg/kg body wt.), and the hippocampi, cerebral cortex, striata, hypothalamus and cerebellum dissected out 60 min later to measure antioxidant enzyme activities, free-radical production and damage to macromolecules. POEE administration reduced free-radical production in the hypothalamus, lead to significant decrease in lipid peroxidation in the cerebral cortex, striatum and hypothalamus, as well as in the carbonyl content in cerebellum and striatum. In terms of antioxidant enzymes, catalase activity was increased in the cortex, striatum, cerebellum and hippocampus, while glutathione peroxidase activity was increased in the hippocampus. This study suggests that POEE contains compounds able to improve the cellular antioxidant network efficacy in the brain, ultimately reducing the damage caused by oxidative stress.  相似文献   

18.
Metabolic abnormalities observed in retina and in cerebral cortex were compared in diabetic rats and experimentally galactosemic rats. Diabetes or experimental galactosemia of 2 months duration significantly increased oxidative stress in retina, as shown by elevation of retinal thiobarbituric acid reactive substances (TBARS) and subnormal activities of antioxidant defense enzymes, but had no such effect in the cerebral cortex. Activities of sodium potassium adenosine triphosphatase [(Na,K)-ATPase] and calcium ATPase became subnormal in retina as well as in cerebral cortex. In contrast, protein kinase C (PKC) activity was elevated in retina but not in cerebral cortex in the same hyperglycemic rats. Dietary supplementation with an antioxidant mixture (containing ascorbic acid, Trolox, α-tocopherol acetate, N-acetyl cysteine, β-carotene, and selenium) prevented the diabetes- induced and galactosemia-induced elevation of retinal oxidative stress, the elevation of retinal PKC activity and the decrease of retinal ATPases. In cerebral cortex, administration of the antioxidant diet also prevented the diabetes-induced decreases in (Na,K)-ATPase and calcium ATPases, but had no effect on TBARS and activities of PKC and antioxidant-defense enzymes. The results indicate that retina and cerebral cortex differ distinctly in their response to elevation of tissue hexose, and that cerebral cortex is more resistant than retina to diabetes-induced oxidative stress. The greater resistance to oxidative stress in cerebral cortex, as compared to retina, is consistent with the resistance of cerebral cortex to microvascular disease in diabetes, and with a hypothesis that oxidative stress contributes to microvascular disease in diabetes. Dietary supplementation with these antioxidants offers a means to inhibit multiple hyperglycemia-induced retinal metabolic abnormalities.  相似文献   

19.
Here we investigated the effects of estradiol replacement in ovariectomized female rats using hippocampal slices exposed to oxygen-glucose deprivation (OGD). OGD induced lactate dehydrogenase (LDH) release to the incubation medium, what was assumed as a parameter of cellular death. In the estradiol-treated group the LDH release was markedly decreased by 23% as compared to the vehicle-treated group. In attempt to study a possible mechanism by which estradiol acts, we investigated some parameters of oxidative stress. In both vehicle-treated and estradiol-treated groups, OGD significantly increased the free radical production by 34% and 16%, respectively, although no significant differences on total antioxidant capacity were observed. Interestingly, estradiol replacement prevented the significant reduction in tryptophan and tyrosine contents caused by OGD observed in vehicle-treated animals. Our results show that estradiol replacement in ovariectomized female rats decreases cellular susceptibility to an ischemic-like injury and suggest a role for the hormone on protein damage prevention.  相似文献   

20.
Dystrophin is a protein found at the plasmatic membrane in muscle and postsynaptic membrane of some neurons, where it plays an important role on synaptic transmission and plasticity. Its absence is associated with Duchenne's muscular dystrophy (DMD), in which cognitive impairment is found. Oxidative stress appears to be involved in the physiopathology of DMD and its cognitive dysfunction. In this regard, the present study investigated oxidative parameters (lipid and protein peroxidation) and antioxidant enzymes activities (superoxide dismutase and catalase) in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx and normal C57BL10 mice. We observed (1) reduced lipid peroxidation in striatum and protein peroxidation in cerebellum and prefrontal cortex; (2) increased superoxide dismutase activity in cerebellum, prefrontal cortex, hippocampus and striatum; and (3) reduced catalase activity in striatum. It seems by our results, that the superoxide dismutase antioxidant mechanism is playing a protective role against lipid and protein peroxidation in mdx mouse brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号