首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor suppressor long noncoding RNA maternally expressed gene 3 (lncRNA MEG3) exists in various cancers. Nonetheless, the functions of lncRNA MEG3 in choriocarcinoma (CC) are still not well studied. We explored the effects of lncRNA MEG3 on human CC JEG-3 and BeWo cells. lncRNA MEG3 was overexpressed, and the effects of lncRNA MEG3 on cell viability, proliferation, apoptosis, migration, and invasion were assessed by the cell counting kit-8 assay, western blot analysis, flow cytometry (plus western blot analysis), and transwell assay (plus western blot analysis), respectively. Then, the expression level of miR-211 was detected by real-time quantitative polymerase chain reaction. After that, the effects of dysregulated microRNA-211 (miR-211) with overexpressing lncRNA MEG3 on JEG-3 cells and BeWo cells were testified. Western blot analysis was used to study the involvements of the signaling pathways in the lncRNA MEG3-associated modulation. We found that lncRNA MEG3 upregulation reduced cell viability, inhibited proliferation, migration and invasion, and promoted apoptosis. Expression of miR-211 was upregulated after lncRNA MEG3 overexpression. Effects of lncRNA MEG3 overexpression were augmented by miR-211 overexpression, while they were declined by miR-211 silencing. Phosphorylated levels of PI3K, AKT, and AMP-activated protein kinase (AMPK) were decreased by lncRNA MEG3 overexpression via regulation of miR-211. To sum up, lncRNA MEG3 could repress proliferation, migration and invasion, and promote apoptosis of JEG-3 and BeWo cells through upregulating miR-211. The PI3K/AKT and AMPK pathways were inhibited by lncRNA MEG3 overexpression via regulation of miR-211.  相似文献   

2.
3.
Long noncoding RNA Breast Cancer Antiestrogen Resistance 4 (BCAR4) has been identified to be oncogenic in several cancers. In our study, we demonstrated that BCAR4 expression was significantly upregulated in glioma tissues compared with paired nontumor tissues. In addition, higher BCAR4 level was associated with poor overall survival in patients with glioma. Besides, we also discovered that knockdown of BCAR4 inhibited cell proliferation, whereas BCAR4 overexpression promoted this process. Intriguingly, we proved a cellular transformation of normal human astrocyte cells (NHAs) in response to enforced expression of BCAR4. In addition, we revealed that BCAR4 affected cell proliferation in glioma cells by promoting cell cycle progression and inhibiting cell apoptosis. Mechanistically, we uncovered that BCAR4 activated PI3K/AKT signaling pathway in glioma through upregulating EGFR and interacting with it. Moreover, activating PI3K/AKT pathway could reverse the repressive effects caused by BCAR4 silence on the biological behaviors of glioma cells, whereas inhibition of this pathway rescued the impact of BACR4 upregulation in NHAs. These findings disclosed that BCAR4 contributes to glioma progression by enhancing cell growth via activating EGFR/PI3K/AKT pathway, providing potent evidence that BCAR4 could be an effective new target for treatment and prognosis of glioma patients.  相似文献   

4.
Glioma is a common primary brain tumor with high mortality rate and poor prognosis. Long noncoding RNA maternally expressed gene 3 (MEG3) is a tumor suppressor in diverse cancer types. However, the role of MEG3 in glioma remains unclear. We aimed to explore the effects of MEG3 on U251 cells as well as the underlying mechanisms. U251 cells were stably transfected with different recombined plasmids to overexpress or silence MEG3. Effects of aberrantly expressed MEG3 on cell viability, migration, apoptosis, expressions of apoptosis-associated and autophagy-associated proteins, and phosphorylated levels of key kinases in the PI3K/AKT/mTOR pathway were all evaluated. Then, messenger RNA (mRNA) and protein expression of Sirt7 in cells abnormally expressing MEG3 were estimated. In addition, effects of abnormally expressed MEG3 and Sirt7 on U251 cells were determined to reveal the underlying mechanism of MEG3-associated modulation. Cell viability and migration were significantly reduced by MEG3 overexpression whereas cell apoptosis as well as Bax and cleaved caspase-3/-9 proteins were obviously induced. Beclin-1 and LC3-II/LC3-I were upregulated and p62 was downregulated in MEG3 overexpressed cells. In addition, the autophagy pharmacological inhibitor (3-methyladenine, 3-MA) affected the effect of MEG3 overexpression on cell proliferation. Furthermore, the phosphorylated levels of key kinases in the PI3K/AKT/mTOR pathway were all reduced by MEG3 overexpression. Sirt7 was positively regulated by MEG3 expression, and effects of MEG3 overexpression on U251 cells were ameliorated by Sirt7 silence. MEG3 suppressed cell proliferation and migration but promoted autophagy in U251 cells through positively regulating Sirt7, involving in the inhibition of the PI3K/AKT/mTOR pathway.  相似文献   

5.
Increasing studies showed that long noncoding RNAs (lncRNAs) had crucial regulatory roles in various tumors, including gastric cancer (GC). Recent studies demonstrated that lncRNA nicotinamide nucleotide transhydrogenase-antisense RNA1 (NNT-AS1) played an important role in several tumors. However, the role and expression of NNT-AS1 in GC progression remain unknown. In our study, we indicated that NNT-AS1 expression was upregulated in GC samples compared with the nontumor tissues. We also showed that NNT-AS1 expression was upregulated in the GC cell lines. Ectopic expression of NNT-AS1 promoted GC cell line HGC-27 cell proliferation, cell cycle progression, and invasion. In addition, we showed that NNT-AS1 acted as a sponge competing endogenous RNA for microRNA-363 (miR-363), which was downregulated in the GC samples and cell lines. miR-363 expression was negatively related with NNT-AS1 expression in GC samples. Upregulated expression of miR-363 suppressed GC cell growth, cycle, and invasion. Furthermore, we reported that elevated expression of NNT-AS1 promoted GC cell proliferation, cycle, and invasion partly by suppressing miR-363 expression. These results indicated that lncRNA NNT-AS1 acted as an oncogene in the development of GC partly by inhibiting miR-363 expression.  相似文献   

6.
7.
Long noncoding RNAs (lncRNAs) have been involved in the pathogenesis of several human cancers including gastric cancer. In the current study, we selected five lncRNAs namely NEAT1, TUG1, PANDA, UCA1, and GHET1 to assess their expressions in gastric cancer samples compared with adjacent noncancerous tissues (ANCTs) from the same patients. Some previous reports have shown contribution of these lncRNAs in gastric cancer. However, we aimed to explore their associations with patients’ clinicopathological data and their potential as diagnostic biomarkers. Significant associations were found between site of primary tumor and relative expression of all lncRNAs in cancer samples compared with ANCTs. Besides, GHET1 relative expression was associated with lymph node status. The diagnostic power of GHET1 was higher from other lncRNAs. Combination of GHET1, TUG1, UCA1, and PANDA increased the diagnostic power and significance (AUC = 0.8; P < 0.0001). The current study supports participation of lncRNAs in the pathogenesis of gastric cancer and highlights their potential as diagnostic biomarkers.  相似文献   

8.
9.
10.
11.
12.
The aim of this study was to explore the relationship between the expression of HOXD antisense growth-associated long noncoding RNA (HAGLROS) and prognosis of patients with colorectal cancer (CRC), as well as the roles and regulatory mechanism of HAGLROS in CRC development. The HAGLROS expression in CRC tissues and cells was detected. The correlation between HAGLROS expression and survival time of CRC patients was investigated. Moreover, HAGLROS was overexpressed and suppressed in HCT-116 cells, followed by detection of cell viability, apoptosis, and the expression of apoptosis-related proteins and autophagy markers. Furthermore, the association between HAGLROS and miR-100 and the potential targets of miR-100 were investigated. Besides, the regulatory relationship between HAGLROS and PI3K/AKT/mTOR pathway was elucidated. The results showed that HAGLROS was highly expressed in CRC tissues and cells. Highly expression of HAGLROS correlated with a shorter survival time of CRC patients. Moreover, knockdown of HAGLROS in HCT-116 cells induced apoptosis by increasing the expression of Bax/Bcl-2 ratio, cleaved-caspase-3, and cleaved-caspase-9, and inhibited autophagy by decreasing the expression of LC3II/LC3I and Beclin-1 and increasing P62 expression. Furthermore, HAGLROS negatively regulated the expression of miR-100, and HAGLROS controlled HCT-116 cell apoptosis and autophagy through negatively regulation of miR-100. Autophagy related 5 (ATG5) was verified as a functional target of miR-100 and miR-100 regulated HCT-116 cell apoptosis and autophagy through targeting ATG5. Besides, HAGLROS overexpression activated phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. In conclusion, a highly expression of HAGLROS correlated with shorter survival time of CRC patients. Downregulation of HAGLROS may induce apoptosis and inhibit autophagy in CRC cells by regulation of miR-100/ATG5 axis and PI3K/AKT/mTOR pathway.  相似文献   

13.
14.
The importance of long noncoding RNAs (lncRNAs) has been certified in malignant melanoma. Nonetheless, the functions of lncRNA paternally expressed gene 10 (PEG10) in malignant melanoma remain uninvestigated. This research discloses the influence of PEG10 in the biological actions of malignant melanoma cells. The sh-PEG10 plasmid was transfected into A375 cells; meanwhile, the effects of declined PEG10 on cell viability, apoptosis, migration, invasion, and the correlative protein levels were probed. The miR-33a expression in sh-PEG10-transfected cells was examined, and the above biological processes were studied again in miR-33a inhibitor-transfected A375 cells. Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and mechanistic target of rapamycin (mTOR) pathways were delved via Western blot. We found that the enhancement of PEG10 was discovered in melanoma tissues compared to related nonmelanoma tissues. Declination of PEG10 frustrated cell viability, repressed cyclinD1 and CDK4 expression, and triggered apoptosis, as well as suppressed migration and invasion in A375 cells. A negative correction between PEG10 and miR-33a was confirmed, and repressed miR-33a inverted the functions of PEG10 repression in A375 cells. In addition, PEG10 repression discouraged the activation of PI3K/AKT and mTOR pathways via elevation of miR-33a. These results indicated that declination of PEG10 restrained A375 cell growth, migration, and invasion via adjusting miR-33a and PI3K/AKT and mTOR pathways.  相似文献   

15.
16.
Long non-coding RNAs are a kind of endogenous ncRNAs with a length of more than 200 bp. Accumulating evidence suggests that long non-coding RNAs function as pivotal regulators in tumorigenesis and progression. However, their biological roles in breast cancer remain largely unknown. Here, we found that IGF2 antisense RNA (IGF2-AS) was significantly decreased in breast cancer tissues, cell lines, and plasma. Patients with low IGF2-AS were more likely to develop larger tumor size and later clinical stage. Overexpression of IGF2-AS evidently inhibited the proliferation and induced apoptosis of MCF-7 and T47D cells in vitro, as well as retarded tumor growth in vivo. Further investigation revealed that IGF2-AS inhibited the expression of its sense-cognate gene IGF2 in an epigenetic DNMT1-dependent manner, resulting in the inactivation of downstream oncogenic PI3K/AKT/mTOR signaling pathway. Enforced expression of IGF2 could significantly block the tumor inhibitory effect of IGF2-AS. Importantly, we found that IGF2-AS could be used as an effective biomarker for breast cancer diagnosis and prognosis. Taken together, our study indicates that IGF2-AS is a tumor suppressor in breast cancer, restoration of IGF2-AS may be a promising treatment for this fatal disease.  相似文献   

17.
18.
19.
卵巢癌是女性生殖系统常见的恶性肿瘤,发病率居于妇科恶性肿瘤第三位,死亡率居于妇科恶性肿瘤之首。目前对卵巢癌的标准治疗包括肿瘤细胞减灭术及卡铂和紫杉醇的联合化疗。PI3K/AKT/mTOR信号通路在卵巢癌的细胞增殖、侵袭、细胞周期进展、血管生成及耐药中发挥重要作用,是卵巢癌中最常发生改变的细胞内途径。本文对PI3K/AKT/mTOR信号通路及其在卵巢癌增殖和进展中的影响、PI3K/AKT/mTOR信号通路抑制剂在卵巢癌中的治疗应用做简要综述。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号