首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
外泌体是细胞分泌的一种纳米级囊泡结构,在血液、唾液、尿液等多种体液中均有分布.作为一类重要的细胞间通信分子,外泌体含有多种具有生物活性的成分,可通过多种方式在人体中发挥调节作用.目前在多种类型的细胞中均发现外泌体的存在,而肿瘤细胞来源的外泌体由于其本身的特性和功能特点,可通过微环境介导肿瘤细胞的增生、血管形成和免疫耐受,并可通过介导上皮-间质转化(epithelial-mesenchymal transition, EMT)
和胞内药物排斥反应等增加肿瘤细胞的化疗抵抗能力.同时,因其含有肿瘤细胞所分泌的特异性成分,因而可通过对外泌体中相关分子改变的检测,对疾病进行诊断和监测,并可为临床个体化用药提供新思路.  相似文献   

2.
Exosomes offer a new perspective on the biology of cancer with both diagnostic and therapeutic concepts. Due to the cell-to-cell association, exosomes are involved in the progression, metastasis, and therapeutic efficacy of the tumor. They can be isolated from blood and other body fluids to determine the disease progression in the body, including cancer growth. In addition to being reservoirs of biochemical markers of cancer, exomes can be designed to restore tumor immunity. Tumor exosomes interact with different cells in the tumor microenvironment to confer beneficial modulations, responsible for stromal activity, angiogenesis, increased vascular permeability, and immune evasion. Exosomes also contribute to the metastasis with the aim of epithelial transmission to the mesenchyme and the formation of premetastatic niches. Moreover, exosomes protect cells against the cytotoxic effects of chemotherapeutic drugs and prevent the transmission of chemotherapy resistance to adjacent cells. Therefore, exosomes are essential for many fatal cancer agents, and understanding their origins and role in cancer is important. In this article, we attempted to clarify the potential of exosomes for the application in cancer diagnosis and therapy.  相似文献   

3.
Exosomes are 40–100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently,m RNAs and micro RNAs(mi RNAs) have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sorting mechanism of exosomal mi RNAs, since the mi RNA profiles of exosomes may differ from those of the parent cells. Exosomal mi RNAs play an important role in disease progression, and can stimulate angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exosomal mi RNAs, and briefly describe how exosomes and their mi RNAs function in recipient cells.Finally, we will discuss the potential applications of these mi RNA-containing vesicles in clinical settings.  相似文献   

4.
Exosomes are cell-derived vesicles that are secreted by both normal and cancer cells. Over the last decade, a few studies have revealed that exosomes cross talk and/or influence major tumor-related pathways such as angiogenesis and metastasis involving many cell types within the tumor microenvironment. The protein composition of the membrane of an exosome reflects that of the membrane of the cell of origin. Because of this, tumor-derived exosomes differ from exosomes that are derived from normal cells. The detection of tumor exosomes and analysis of their molecular composition hold promise for diagnosis and prognosis of cancer. Here, we present hydrogel microarrays (biochips), which contain a panel of immobilized antibodies that recognize tetraspanins (CD9, CD63, CD81) and prognostic markers for colorectal cancer (A33, CD147). These biochips make it possible to analyze the surface proteins of either isolated exosomes or exosomes that are present in the serum samples without isolation. These biochips were successfully used to analyze the surface proteins of exosomes from serum that was collected from a colorectal cancer patient and healthy donor. Biochip-guided immunofluorescent analysis of the exosomes has made it possible for us to detect the A33 antigen and CD147 in the serum sample of the colorectal cancer patient with normal levels of CEA and CA19-9.  相似文献   

5.
Exosomes are small membrane vesicles released by a variety of cell types. Exosomes contain genetic materials, such as mRNAs and microRNAs (miRNAs), implying that they may play a pivotal role in cell-to-cell communication. Mesenchymal stem cells (MSCs), which potentially differentiate into multiple cell types, can migrate to the tumor sites and have been reported to exert complex effects on tumor progression. To elucidate the role of MSCs within the tumor microenvironment, previous studies have suggested various mechanisms such as immune modulation and secreted factors of MSCs. However, the paracrine effects of MSC-derived exosomes on the tumor microenvironment remain to be explored. The hypothesis of this study was that MSC-derived exosomes might reprogram tumor behavior by transferring their molecular contents. To test this hypothesis, exosomes from MSCs were isolated and characterized. MSC-derived exosomes exhibited different protein and RNA profiles compared with their donor cells and these vesicles could be internalized by breast cancer cells. The results demonstrated that MSC-derived exosomes significantly down-regulated the expression of vascular endothelial growth factor (VEGF) in tumor cells, which lead to inhibition of angiogenesis in vitro and in vivo. Additionally, miR-16, a miRNA known to target VEGF, was enriched in MSC-derived exosomes and it was partially responsible for the anti-angiogenic effect of MSC-derived exosomes. The collective results suggest that MSC-derived exosomes may serve as a significant mediator of cell-to-cell communication within the tumor microenvironment and suppress angiogenesis by transferring anti-angiogenic molecules.  相似文献   

6.
Exosomes are important mediators in cell‐to‐cell communication and, recently, their role in melanoma progression has been brought to light. Here, we characterized exosomes secreted by seven melanoma cell lines with varying degrees of aggressivity. Extensive proteomic analysis of their exosomes confirmed the presence of characteristic exosomal markers as well as melanoma‐specific antigens and oncogenic proteins. Importantly, the protein composition differed among exosomes from different lines. Exosomes from aggressive cells contained specific proteins involved in cell motility, angiogenesis, and immune response, while these proteins were less abundant or absent in exosomes from less aggressive cells. Interestingly, when exposed to exosomes from metastatic lines, less aggressive cells increased their migratory capacities, likely due to transfer of pro‐migratory exosomal proteins to recipient cells. Hence, this study shows that the specific protein composition of melanoma exosomes depends on the cells’ aggressivity and suggests that exosomes influence the behavior of other tumor cells and their microenvironment.  相似文献   

7.
Adoptive cell transfer (ACT), a form of cell-based immunotherapy that eliminates cancer by restoring and strengthening the body’s immune system, has revolutionized cancer treatment. ACT entails intravenous transfer of either tumor-resident or peripheral blood-modified immune cells into cancer patients to mediate anti-tumor response. Although these immune cells control and eradicate cancer via enhanced cytotoxicity against specific tumor antigens, several side effects have been frequently reported in clinical trials. Recently, exosomes, potential cell-free therapeutics, have emerged as an alternative to cell-based immunotherapies, due to their higher stability under same storage condition, lower risk of GvHD and CRS, and higher resistance to immunosuppressive tumor microenvironment. Exosomes, which are nano-sized lipid vesicles, are secreted by living cells, including immune cells. Exosomes contain proteins, lipids, and nucleic acids, and the functional role of each exosome is determined by the specific cargo derived from parental cells. Exosomes derived from cytotoxic effectors including T cells and NK cells exert anti-tumor effects via proteins such as granzyme B and FasL. In this mini-review, we describe the current understanding of the ACT and immune cell-derived exosomes and discuss the limitations of ACT and the opportunities for immune cell-derived exosomes as immune therapies.  相似文献   

8.
外泌体是一种直径为30 nm^100 nm的细胞外脂质囊泡,几乎可以被所有类型的细胞释放,包括癌细胞。作为细胞间通讯的重要介质,宿主细胞或癌细胞分泌的外泌体可以介导包括miRNA、mRNA、DNA片段及蛋白质在内的多种物质参与肿瘤的发生、生长、侵袭及转移过程。尤其是miRNA已经被证实是肿瘤衍生的外泌体用于实现自身功能机制的重要组成部分。因此,外泌体miRNA在调节肿瘤发生发展、侵袭转移、肿瘤免疫应答、肿瘤血管生成及肿瘤耐药方面具有显著功能。本文就外泌体介导的miRNA对肿瘤的相关调控作用作一综述。  相似文献   

9.
Tumor-derived exosomes are nano-sized vesicles acting as multi-signal devices influencing tumor growth at local and distant sites. Exosomes are derived from the endolysosomal compartment and can shuttle diverse biomolecules like nucleic acids (microRNAs and DNA fragments), lipids, proteins, and even pharmacological compounds from a donor cell to recipient cells. The transfer of cargo to recipient cells enables tumor-derived exosomes to influence diverse cellular functions like proliferation, cell survival, and migration in recipient cells, highlighting tumor-derived exosomes as important players in communication within the tumor microenvironment and at distant sites. In this review, we discuss the mechanisms associated with exosome biogenesis and cargo sorting. In addition, we highlight the communication of tumor-derived exosomes in the tumor microenvironment during different phases of tumor development, focusing on angiogenesis, immune escape mechanisms, drug resistance, and metastasis.  相似文献   

10.
Extracellular vesicles are known as actual intermediaries of intercellular communications, such as biological signals and cargo transfer between different cells. A variety of cells release the exosomes as nanovesicular bodies. Exosomes contain different compounds such as several types of nucleic acids and proteins. In this study, we focused on exosomes in colorectal cancer as good tools that can be involved in various cancer-related processes. Furthermore, we summarize the advantages and disadvantages of exosome extraction methods and review related studies on the role of exosomes in colorectal cancer. Finally, we focus on reports available on relations between mesenchymal stem cell–derived exosomes and colorectal cancer. Several cancer-related processes such as cancer progression, metastasis, and drug resistance of colorectal cancer are related to the cargoes of exosomes. A variety of molecules, especially proteins, microRNAs, and long noncoding RNAs, play important roles in these processes. The microenvironment features, such as hypoxia, also have very important effects on the properties of the origin cell–derived exosomes. On the other hand, exosomes derived from colorectal cancer cells also interfere with cancer chemoresistance. Furthermore, today it is known that exosomes and their contents can likely be very effective in noninvasive colorectal cancer diagnosis and therapy. Thus, exosomes, and especially their cargoes, play different key roles in various aspects of basic and clinical research related to both progression and therapy of colorectal cancer.  相似文献   

11.
《Tsitologiia》2012,54(5):430-438
Exosomes are 20-100 nm membrane vesicles of endocytic origin secreted by most cell types in vitro and in vivo. Since exosomes contain both RNA (mRNA and microRNA) and proteins, which can be transferred to another cell, and be functional in that new environment, these vesicles may be involved in the communication between cells. The secretion of exosomes by tumor cells and their implication in the transport and propagation of infectious cargo suggest their participation in pathological situations. Our purpose here is to describe methods for the production, purification, and proteomic characterization of exosomes derived from human cancer cells in vitro. Based on exosomes' unique lipidic composition, we have developed the new approach to increase production of exosomes by cells in vitro. Secondly, we have developed quality control by laser correlation spectroscopy for exosomal assays based on the amount of MHC class I and CD63 molecules on their surface. At last, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry was used after 2D electrophoresis for the proteomic analysis of exosomes derived from cancer cell lines. This study describes the protein composition of brain tumor cell-derived exosomes in more detail.  相似文献   

12.
Exosomes proteins and microRNAs have gained much attention as diagnostic tools and biomarker potential in various malignancies including prostate cancer (PCa). However, the role of exosomes and membrane-associated receptors, particularly epidermal growth factor receptor (EGFR) as mediators of cell proliferation and invasion in PCa progression remains unexplored. EGFR is frequently overexpressed and has been associated with aggressive forms of PCa. While PCa cells and tissues express EGFR, it is unknown whether exosomes derived from PCa cells or PCa patient serum contains EGFR. The aim of this study was to detect and characterize EGFR in exosomes derived from PCa cells, LNCaP xenograft and PCa patient serum. Exosomes were isolated from conditioned media of different PCa cell lines; LNCaP xenograft serum as well as patient plasma/serum by differential centrifugation and ultracentrifugation on a sucrose density gradient. Exosomes were confirmed by electron microscopy, expression of exosomal markers and NanoSight analysis. EGFR expression was determined by western blot analysis and ELISA. This study demonstrates that exosomes may easily be derived from PCa cell lines, serum obtained from PCa xenograft bearing mice and clinical samples derived from PCa patients. Presence of exosomal EGFR in PCa patient exosomes may present a novel approach for measuring of the disease state. Our work will allow to build on this finding for future understanding of PCa exosomes and their potential role in PCa progression and as minimal invasive biomarkers for PCa.  相似文献   

13.
Exosome-based immunotherapy   总被引:24,自引:0,他引:24  
Exosomes are small membrane vesicles originating from late endosomes and secreted by hematopoietic and epithelial cells in culture. Exosome proteic and lipid composition is unique and might shed some light into exosome biogenesis and function. Exosomes secreted from professional antigen-presenting cells (i.e., B lymphocytes and dendritic cells) are enriched in MHC class I and II complexes, costimulatory molecules, and hsp70–90 chaperones, and have therefore been more extensively studied for their immunomodulatory capacities in vitro and in vivo. This review will present the main biological features pertaining to tumor or DC-derived exosomes, will emphasize their immunostimulatory function, and will discuss their implementation in cancer immunotherapy.Abbreviations APC antigen-presenting cell - ASI active specific immunotherapy - CTL cytotoxic T lymphocyte - DC dendritic cell - FDC follicular dendritic cell - MD-DC monocyte-derived dendritic cell - GMP good manufacturing procedure - HLA human leukocyte antigen - HSP heat shock protein - MHC major histocompatibility complex - MVB multivesicular body - ExAs ascitis-derived exosomes - DEX DC-derived exosome - TEX tumor cell–derived exosome This work was presented at the first Cancer Immunology and Immunotherapy Summer School, 8–13 September 2003, Ionian Village, Bartholomeio, Peloponnese, Greece.  相似文献   

14.
Exosomes are small vesicles (50–150 nm) of endocytic origin that are released by many different cell types. Exosomes in the tumor microenvironment may play a key role in facilitating cell-cell communication. Exosomes are reported to predominantly contain RNA and proteins. In this study, we investigated whether exosomes from pancreatic cancer cells and serum from patients with pancreatic ductal adenocarcinoma contain genomic DNA. Our results provide evidence that exosomes contain >10-kb fragments of double-stranded genomic DNA. Mutations in KRAS and p53 can be detected using genomic DNA from exosomes derived from pancreatic cancer cell lines and serum from patients with pancreatic cancer. In addition, using whole genome sequencing, we demonstrate that serum exosomes from patients with pancreatic cancer contain genomic DNA spanning all chromosomes. These results indicate that serum-derived exosomes can be used to determine genomic DNA mutations for cancer prediction, treatment, and therapy resistance.  相似文献   

15.
16.
Exosomes are nanovesicles released by normal and tumor cells, which are detectable in cell culture supernatant and human biological fluids, such as plasma. Functions of exosomes released by "normal" cells are not well understood. In fact, several studies have been carried out on exosomes derived from hematopoietic cells, but very little is known about NK cell exosomes, despite the importance of these cells in innate and adaptive immunity. In this paper, we report that resting and activated NK cells, freshly isolated from blood of healthy donors, release exosomes expressing typical protein markers of NK cells and containing killer proteins (i.e., Fas ligand and perforin molecules). These nanovesicles display cytotoxic activity against several tumor cell lines and activated, but not resting, immune cells. We also show that NK-derived exosomes undergo uptake by tumor target cells but not by resting PBMC. Exosomes purified from plasma of healthy donors express NK cell markers, including CD56(+) and perforin, and exert cytotoxic activity against different human tumor target cells and activated immune cells as well. The results of this study propose an important role of NK cell-derived exosomes in immune surveillance and homeostasis. Moreover, this study supports the use of exosomes as an almost perfect example of biomimetic nanovesicles possibly useful in future therapeutic approaches against various diseases, including tumors.  相似文献   

17.
Exosome function: from tumor immunology to pathogen biology   总被引:3,自引:0,他引:3  
Exosomes are the newest family member of 'bioactive vesicles' that function to promote intercellular communication. Exosomes are derived from the fusion of multivesicular bodies with the plasma membrane and extracellular release of the intraluminal vesicles. Recent studies have focused on the biogenesis and composition of exosomes as well as regulation of exosome release. Exosomes have been shown to be released by cells of hematopoietic and non-hematopoietic origin, yet their function remains enigmatic. Much of the prior work has focused on exosomes as a source of tumor antigens and in presentation of tumor antigens to T cells. However, new studies have shown that exosomes might also promote cell-to-cell spread of infectious agents. Moreover, exosomes isolated from cells infected with various intracellular pathogens, including Mycobacterium tuberculosis and Toxoplasma gondii , have been shown to contain microbial components and can promote antigen presentation and macrophage activation, suggesting that exosomes may function in immune surveillance. In this review, we summarize our understanding of exosome biogenesis but focus primarily on new insights into exosome function. We also discuss their possible use as disease biomarkers and vaccine candidates.  相似文献   

18.
Exosomes are derived from limiting membranes of MVBs (multivesicular bodies). They carry and transfer selected membrane and cytoplasmic proteins, mRNA and microRNA into target cells. It is due to this shipping of information that exosomes are considered to be the most promising therapeutic tool for multiple diseases. However, whereas knowledge on the composition of exosomes is rapidly increasing, the mode of selective recruitment into exosomes as well as target cell selection is poorly understood. We suggest that at least part of this task is taken over by tetraspanins. Tetraspanins, which are involved in morphogenesis, fission and fusion processes, are enriched in exosomes, and our previous work revealed that the recruitment of distinct tetraspanins into exosomes follows very selective routes, including a rearrangement of the tetraspanin web. Furthermore, only exosomes expressing a defined set of tetraspanins and associated molecules target endothelial cells, thereby contributing to angiogenesis and vasculogenesis. On the basis of these findings we hypothesize (i) that the protein assembly of exosomes and possibly the recruitment of microRNA will be regulated to a large extent by tetraspanins and (ii) that tetraspanins account for target cell selection and the tight interaction/uptake of exosomes by the target cell. Exosomes herald an unanticipated powerful path of cell-cell communication. An answer to how exosomes collect and transfer information will allow the use of Nature's concept to cope with malfunctions.  相似文献   

19.
Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells) increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better understanding of tumor radiation response.  相似文献   

20.
Neuroblastoma is the third most common childhood cancer, and timely diagnosis and sensitive therapeutic monitoring remain major challenges. Tumor progression and recurrence is common with little understanding of mechanisms. A major recent focus in cancer biology is the impact of exosomes on metastatic behavior and the tumor microenvironment. Exosomes have been demonstrated to contribute to the oncogenic effect on the surrounding tumor environment and also mediate resistance to therapy. The effect of genotype on exosomal phenotype has not yet been explored. We interrogated exosomes from human neuroblastoma cells that express wild-type or mutant forms of the HFE gene. HFE, one of the most common autosomal recessive polymorphisms in the Caucasian population, originally associated with hemochromatosis, has also been associated with increased tumor burden, therapeutic resistance boost, and negative impact on patient survival. Herein, we demonstrate that changes in genotype cause major differences in the molecular and functional properties of exosomes; specifically, HFE mutant derived exosomes have increased expression of proteins relating to invasion, angiogenesis, and cancer therapeutic resistance. HFE mutant derived exosomes were also shown to transfer this cargo to recipient cells and cause an increased oncogenic functionality in those recipient cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号