首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Currently, the prevention of ischemic diseases such as myocardial infarction associated with ischemia/reperfusion (I/R) injury remains to be a challenge. Thus, this study was designed to explore the effects of tripartite motif protein 11 (TRIM11) on cardiomyocytes I/R injury and its underlying mechanism. Cardiomyocytes AC16 were used to establish an I/R injury cell model. After TRIM11 downregulation in I/R cells, cell proliferation (0, 12, 24, and 48 h) and apoptosis at 48 h as well as the related molecular changes in oxidative stress-related pathways was detected. Further, after the treatment of TRIM11 overexpression, SP600125, or DUSP1 overexpression, cell proliferation, apoptosis, and related genes were detected again. As per our findings, it was determined that TRIM11 was highly expressed in the cardiomyocytes AC16 after I/R injury. Downregulation of TRIM11 was determined to have significantly reduced I/R-induced proliferation suppression and apoptosis. Besides, I/R-activated c-Jun N-terminal kinase (JNK) signaling and cleaved caspase 3 and Bax expression were significantly inhibited by TRIM11 downregulation. In addition, the overexpression of TRIM11 significantly promoted apoptosis in AC16 cells, and JNK1/2 inhibition and DUSP1 overexpression potently counteracted the induction of TRIM11 overexpression in AC16 cells. These suggested that the downregulation of TRIM11 attenuates apoptosis in AC16 cells after I/R injury probably through the DUSP1-JNK1/2 pathways.  相似文献   

3.
Germacrone (GM) is an anti-inflammatory compound extracted from Rhizoma curcuma. Here, we strived to investigate the neuroprotective effects of GM in rat models of transient middle cerebral artery occlusion/reperfusion injury. Rats immediately after cerebral ischemia were intraperitoneally injected with GM at doses of 5, 10, and 20 mg/kg. After 1 day of reperfusion, the water content in the brain, infarct volume, and neurological deficits were assessed. Hippocampus neurons were histopathologically examined by hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Activities of glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-PX) in brain tissue were detected. Real-time PCR and Western blotting were utilized to quantify the expression of apoptosis markers, such as caspase-3, Bax, and Bcl-2. The content of phospho-Akt (p-Akt) was also measured using Western blotting. GM treatment markedly decreased the brain water content, infarct volume and the neurological deficits, which was corroborated by attenuated histopathologic change. MDA levels were reduced and activities of GSH, SOD, and GSH-PX were elevated after GM treatment. Caspase-3 and Bax were decreased, and Bcl-2 was increased at both messenger RNA and protein levels by GM treatment. The p-Akt expression was increased by GM. Our data indicated that the neuroprotective effects of GM may attenuate the injuries from cerebral ischemia/reperfusion in rats through antioxidative and antiapoptotic mechanisms.  相似文献   

4.
MEKK3 is a member of MAP3K, which plays a pivotal role in cardiac diseases. In this study, we aimed to investigate the effects and potential mechanisms of MEKK3 on hypoxia/reoxygenation (H/R) injury of cardiomyocytes. After exposing H9C2 cells to H/R insult, real-time polymerase chain reaction and western blot analysis showed that MEKK3 was highly expressed. Cell viability, cell apoptosis, caspase 3/7 activity, and cleaved-caspase 3 expression were tested using a CCK-8 assay, Cell Death Detection PLUS ELISA, Caspase-Glo 3/7 Assay Kit and western blot analysis, respectively. Mitochondrial membrane potential, cytochrome C expression, adenosine triphosphate (ATP), and reactive oxygen species also were measured using JC-1 staining, western blot analysis, an ATP Assay Kit, and DCFH 2-DA staining, respectively. The messenger RNA (mRNA) levels and secretions of TNF-α, IL-6, and IL-1β were evaluated. The results revealed that MEKK3 silencing promoted cell survival and attenuated lactate dehydrogenase leakage, cell apoptosis, caspase 3/7 activity, and the protein level of cleaved-caspase 3. Moreover, knockdown of MEKK3 blocked mitochondrial impairment by inhibiting the loss of mitochondrial membrane potential and cytochrome C expression as well as promoting ATP synthesis. MEKK3 deficiency led to a decrease in reactive oxygen species and malondialdehyde (MDA) generation and an increase in superoxide dismutase (SOD) activity. Deletion of MEKK3 led to reduced inflammatory cytokines in mRNA level and secretion. MEKK3 suppression activated the sonic hedgehog (Shh) signaling pathway in H9C2 cells. After blocking the Shh signaling pathway with a specific inhibitor, cyclopamine, the cardioprotective functions of MEKK3 downregulation were partly abolished. In conclusion, downregulation of MEKK3 prevented apoptosis and inflammation in H9C2 cells via the Shh signaling pathway.  相似文献   

5.
Myocardial ischemia-reperfusion (I/R) injury is thought to have its detrimental role in coronary heart disease (CHD), which is considered as the foremost cause of death all over the world. However, molecular mechanism in the progression of myocardial I/R injury is still unclear. The goal of this study was to investigate the expression and function of microRNA-140 (miR-140) in the process of myocardial I/R injury. The miR-140 expression level was analyzed in the myocardium with I/R injury and control myocardium using quantitative real-time polymerase chain reaction. Then the relation between the level of miR-140 and YES proto-oncogene 1 (YES1) was also investigated via luciferase reporter assay. Assessment of myocardial infarct size measurement of serum myocardial enzymes and electron microscopy analysis were used for analyzing the effect of miR-140 on myocardial I/R injury. We also used Western blot analysis to examine the expression levels of the mitochondrial fission–related proteins, Drp1 and Fis1. miR-140 is downregulated, and YES1 is upregulated after myocardial I/R injury. Overexpression of miR-140 could reduce the increase related to myocardial I/R injury in infarct size and myocardial enzymes, and it also could inhibit the expression of proteins related to mitochondrial morphology and myocardial I/R-induced mitochondrial apoptosis by targeting YES1. Taken together, these findings may provide a novel insight into the molecular mechanism of miR-140 and YES1 in the progression of myocardial I/R injury. MiR-140 might become a promising therapeutic target for treating myocardial I/R injury.  相似文献   

6.
缺血后处理对肺缺血/再灌注损伤的保护作用及其机制   总被引:1,自引:0,他引:1  
目的:探讨缺血后处理(聃)是否通过抑制P38丝裂原活化蛋白激酶(P38MAPK)活化来减轻再灌注损伤肺细胞的凋亡。方法:雄性SD大鼠40只,随机分成5组(n=8),即对照组(C组)、肺缺血/再灌注组(I/R组)、肺缺血/再灌注+缺血后处理组(IPO组)、缺血后处理+溶剂对照组(D组)、缺血后处理+SB203580组(SB组)。各组分别于再灌注2h留取左肺组织,检测肺组织湿/干重比(W/D)和总肺含水量(TLW);光镜观察肺组织形态学结构改变并进行肺组织损伤定量评估(IQA);原住末端标记法(TUNEL)检测肺细胞凋亡情况并计算凋亡指数(AI);RT-PCR和免疫组化法测定Bax、Bcl-2基因和蛋白的表达。结果:与C组相比,I/R组W/D、TLW、IQA和AI均显著升高(P〈0.05,P〈0.01),肺组织结构发生明显损伤;Bcl-2、Bcl-2/Bax基因及蛋白表达明显降低,Bax基因及蛋白表达明显升高(P〈0.05,P〈0.01);IPO组、D组、SB组与I/R组相比,w/D、TLW、IQA和AI均显著降低(P〈0.05,P〈0.01),肺组织结构损伤情况有所改善;Bcl-2、Bcl-2/Bax基因及蛋白表达明显升高,Bax基因及蛋白表达明显降低(P〈0.05,P〈0.01);D组与IPO组比较各项指标均无明显差异(均P〉0.05);SB组与IPO组相比,肺组织W/D、TLW、IQA和AI均显著降低(P〈0.05,P〈0.01),肺组织结构未见明显损伤;Bcl-2、Bcl-2/Bax基因及蛋白表达明显升高,Bax基因及蛋白表达明显降低(P〈0.05,P〈0.01)。结论:I/R通过激活P38MAPK导致大鼠肺泡结构严重破坏,肺内细胞大量凋亡;IPO可能是通过抑制P38MAPK通路的激活而减轻L/R损伤。  相似文献   

7.
Acute coronary syndrome (ACS) is characterized by atherosclerotic plaque rupture with a high incidence of recurrent ischemic events. Several microRNAs are found to be aberrantly expressed in atherosclerotic plaques. This study aims to investigate the effects of microRNA-9 (miR-9) on vulnerable atherosclerotic plaque and vascular remodeling in ACS and underlying mechanisms. Microarray-based gene expression profiling was used to identify differentially expressed genes related to ACS and regulatory miRNAs. Oxidized low-density lipoprotein (lectin-like) receptor 1 (OLR1) was identified to be aberrantly activated in ACS and regulated by miR-9. OLR1 was verified as a target gene of miR-9 by bioinformatics prediction and dual luciferase reporter gene assay. The atherosclerotic models were induced in ApoE−/− mice, in which the agomir or antagomir of miR-9, or small interfering RNA (siRNA) against OLR1 were separately introduced. Serum lipid levels and expression of vascular remodeling and inflammatory response-related factors were determined, respectively. On the basis of the obtained results, in the atherosclerosis mice treated with the agomir of miR-9 and siRNA against OLR1, the p38-mitogen-activated protein kinase (p38MAPK) pathway was inhibited; levels of triglyceride, total cholesterol, low-density lipoprotein cholesterol, tumor necrosis factor-α, interleukin-6, and vascular endothelial growth factor were reduced, but the high-density lipoprotein cholesterol level was increased, along with decreased vulnerable atherosclerotic plaque area and enhanced vascular remodeling. Taken together, these findings suggested an inhibitory role miR-9 acts in the formation of vulnerable atherosclerotic plaques in ACS mice, along with a promoted vascular remodeling, via a negative feedback regulation of OLR1-mediated p38MAPK pathway.  相似文献   

8.
Hypoxia-induced cardiomyocyte apoptosis is one of the leading causes of heart failure. Nuclear respiratory factor 1 (NRF-1) was suggested as a protector against cell apoptosis; However, the mechanism is not clear. Therefore, the aim of this study was to elucidate the role of NRF-1 in hypoxia-induced H9C2 cardiomyocyte apoptosis and to explore its effect on regulating the death receptor pathway and mitochondrial pathway. NRF-1 was overexpressed or knocked down in H9C2 cells, which were then exposed to a hypoxia condition for 0, 3, 6, 12, and 24 h. Changes in cell proliferation, cell viability, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP) were investigated. The activities of caspase-3, -8, and -9, apoptosis rate, and the gene and protein expression levels of the death receptor pathway and mitochondrial pathway were analyzed. Under hypoxia exposure, NRF-1 overexpression improved the proliferation and viability of H9C2 cells and decreased ROS generation, MMP loss, caspase activities, and the apoptosis rate. However, the NRF-1 knockdown group showed the opposite results. Additionally, NRF-1 upregulated the expression of antiapoptotic molecules involved in the death receptor and mitochondrial pathways, such as CASP8 and FADD-like apoptosis regulator, B-cell lymphoma 2, B-cell lymphoma-extra-large, and cytochrome C. Conversely, the expression of proapoptotic molecules, such as caspase-8, BH3-interacting domain death agonist, Bcl-2-associated X protein, caspase-9, and caspase-3 was downregulated by NRF-1 overexpression in hypoxia-induced H9C2 cells. These results suggest that NRF-1 functions as an antiapoptotic factor in the death receptor and mitochondrial pathways to mitigate hypoxia-induced apoptosis in H9C2 cardiomyocytes.  相似文献   

9.
10.
Schisantherin A (SchA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, was reported to possess anti‐inflammatory and antioxidant activities. However, its protective effect against renal ischemia‐reperfusion (I/R) injury in human renal tubular epithelial cells subjected to hypoxia/reoxygenation (H/R) has never been studied. Thus, herein, we investigated the effect of SchA on renal I/R injury in vitro. Our results demonstrated that SchA pretreatment significantly improved HK‐2 cell viability exposed to H/R. Pretreatment with SchA markedly inhibited the levels of reactive oxygen species and malondialdehyde, as well as suppressed the production of tumor necrosis factor‐α (TNF‐α), interleukin‐1β, and interleukin‐6 in H/R‐stimulated HK‐2 cells. In addition, SchA also suppressed H/R‐induced HK‐2 cell apoptosis. Furthermore, this protective effect of SchA was mediated through the PI3K/Akt signaling pathway in HK‐2 cells. These findings showed that SchA may exert a protective effect on renal tubular epithelial cells against H/R injury through the activation of PI3K/Akt signaling pathway.  相似文献   

11.
12.
目的:探讨人参皂甙Rb1、Rg1在肾缺血/再灌注血清诱导HK-2细胞凋亡中对Bol-2、Bax表达的影响。方法:制备家兔肾缺血/再灌注血清(SIR)和对照组血清(SC)用于HK-2细胞培养,TUNEL法检测细胞凋亡。实验分组:对照组、缺血/再灌注组、Rb1干预组、Rg1干预组,培养24h后免疫细胞化学法检测Bcl-2、Bax的表达。结果:与缺血/再灌注组比较,Rb1干预组和Rg1干预组Bax的表达明显下降(P〈0.01),Bcl-2/Bax比值增大。结论:人参皂甙Rb1、Rg1对肾缺血/再灌注血清诱导HK-2细胞凋亡具有保护作用。  相似文献   

13.
Myocardial infarction is a major cause of death worldwide. Despite our understanding of the pathophysiology of myocardial infarction and the therapeutic options for treatment have improved substantially, acute myocardial infarction remains a leading cause of morbidity and mortality. Recent findings revealed that GRP78 could protect myocardial cells against ischemia reperfusion injury‐induced apoptosis, but the exact function and molecular mechanism remains unclear. In this study, we aimed to explore the effects of GRP78 on hypoxia/reperfusion (H/R)‐induced cardiomyocyte injury. Intriguingly, we first observed that GRP78 overexpression significantly protected myocytes from H/R‐induced apoptosis. On mechanism, our work revealed that GRP78 protected myocardial cells from hypoxia/reperfusion‐induced apoptosis via the activation of the Nrf2/HO‐1 signaling pathway. We observed the enhanced expression of Nrf2/HO‐1 in GRP78 overexpressed H9c2 cell, while GRP78 deficiency dramatically antagonized the expression of Nrf2/HO‐1. Furthermore, we found that blocked the Nrf2/HO‐1 signaling by the HO‐1 inhibitor zinc protoporphyrin IX (Znpp) significantly retrieved H9c2 cells apoptosis that inhibited by GRP78 overexpression. Taken together, our findings revealed a new mechanism by which GRP78 alleviated H/R‐induced cardiomyocyte apoptosis in H9c2 cells via the promotion of the Nrf2/HO‐1 signaling pathway.  相似文献   

14.
Integrin β1 subunit and its downstream molecule integrin‐linked kinase and focal adhesion kinase have been confirmed to be essential to cell survival and inhibition of apoptosis and hypoxia/reoxygenation (H/R)‐induced injuries in cardiomyocytes. However, it is still unclear whether CrkL [v‐crk avian sarcoma virus CT‐10 oncogene homolog (Crk)‐like], which acts also as a component of the integrin pathway, could also affect H/R‐induced injuries in the cardiomyocytes. The rat‐derived H9C2 cardiomyocytes were infected with a CrkL small hairpin RNA interference recombinant lentivirus, which knockdowns the endogenous CrkL expression in the cardiomyocytes. Apoptosis, cell proliferation and survival were examined in the H9C2 cardiomyocytes treated with either H/R or not. Results showed that knockdown of CrkL could significantly increase apoptosis and inhibition of the cell proliferation and survival and deteriorate the previously mentioned injuries induced by H/R. In contrast, overexpression of human CrkL could relieve the exacerbation of the previously mentioned injuries induced by CrkL knockdown in the H9C2 cardiomyocytes via regulation of Bax and extracellular signal‐regulated kinase1/2 (p‐ERK1/2). In conclusion, these results confirmed that knockdown of CrkL could deteriorate H/R‐induced apoptosis and cell survival inhibition in rat‐derived H9C2 cardiomyocytes via Bax and downregulation of p‐ERK1/2. It implies that CrkL could mitigate H/R‐induced injuries in the cardiomyocytes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Heat stress can inhibit follicular development in dairy cows, and thus can affect their reproductive performance. Follicular granulosa cells can synthesize estrogen, that affects the development and differentiation of follicles by apoptosis. Heme oxygenase 1 (HO-1/heat shock protein 32) plays an antiapoptotic and cytoprotective role in various cells during stress-induced apoptosis, but little is known about its definitive function in bovine (ovarian) granulosa cells (bGCs). In our study, the roles and mechanism of HO-1 on the heat stress-induced apoptosis of bGCs were studied. Our results show that the expression of HO-1 was significantly increased under heat stress. Moreover, HO-1 silencing increased apoptosis, whereas its overexpression dampened apoptosis by regulating the expression of Bax/Bcl-2 and the levels of cleaved caspase-3. In addition, HO-1 can also play a cytoprotective role by affecting estrogen levels and decomposing heme to produce biologically active metabolite carbon monoxide (CO). Meanwhile, CO significantly increased the level of HO-1, decreased Bax/Bcl-2 levels, and inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. The apoptosis of ovarian GCs can affect the secretion of estrogen and lead to disorder of the ovarian microenvironment, thus affecting the normal function of the ovary. Our results indicate that HO-1 acts as a cytoprotective enzyme and plays a protective role in heat-induced apoptosis of bGCs. In conclusion, HO-1 and its metabolite CO inhibit the apoptosis of bGCs induced by heat stress through the ERK1/2 pathway. The results of this study provide a valuable clue for improving the fertility of heat stressed cows in summer.  相似文献   

16.
17.
18.
ObjectivesEvidences demonstrate that sorafenib alleviates liver fibrosis via inhibiting HSC activation and ECM accumulation. The underlying mechanism remains unclear. Ferroptosis, a novel programmed cell death, regulates diverse physiological/pathological processes. In this study, we aim to investigate the functional role of HSC ferroptosis in the anti‐fibrotic effect of sorafenib.Materials and MethodsThe effects of sorafenib on HSC ferroptosis and ECM expression were assessed in mouse model of liver fibrosis induced by CCl4. In vitro, Fer‐1 and DFO were used to block ferroptosis and then explored the anti‐fibrotic effect of sorafenib by detecting α‐SMA, COL1α1 and fibronectin proteins. Finally, HIF‐1α siRNA, plasmid and stabilizers were applied to assess related signalling pathway.ResultsSorafenib attenuated liver injury and ECM accumulation in CCl4‐induced fibrotic livers, accompanied by reduction of SLC7A11 and GPX4 proteins. In sorafenib‐treated HSC‐T6 cells, ferroptotic events (depletion of SLC7A11, GPX4 and GSH; accumulation iron, ROS and MDA) were discovered. Intriguingly, these ferroptotic events were not appeared in hepatocytes or macrophages. Sorafenib‐elicited HSC ferroptosis and ECM reduction were abrogated by Fer‐1 and DFO. Additionally, both HIF‐1α and SLC7A11 proteins were reduced in sorafenib‐treated HSC‐T6 cells. SLC7A11 was positively regulated by HIF‐1α, inactivation of HIF‐1α/SLC7A11 pathway was required for sorafenib‐induced HSC ferroptosis, and elevation of HIF‐1α could inhibit ferroptosis, ultimately limited the anti‐fibrotic effect.ConclusionsSorafenib triggers HSC ferroptosis via HIF‐1α/SLC7A11 signalling, which in turn attenuates liver injury and fibrosis.  相似文献   

19.
20.
ObjectiveTo examine the role of high‐fat and high‐sugar (HFHS) diet‐induced oxidative stress, which is a risk factor for various diseases, in premature ovarian failure (POF).Materials and methodsOvarian granulosa cells (OGCs) were isolated from mice and cultured in medium supplemented with HFHS and poly (lactic‐co‐glycolic acid) (PLGA)‐cross‐linked miR‐146b‐5p nanoparticles (miR‐146@PLGA). RNA and protein expression levels were examined using quantitative real‐time polymerase chain reaction and Western blotting, respectively. HFHS diet‐induced POF model mice were administered miR‐146@PLGA.ResultsThe ovarian tissue of mice fed a HFHS diet exhibited the typical pathological characteristics of POF. HFHS supplementation induced oxidative stress injury in the mouse OGCs, activation of the Dab2ip/Ask1/p38‐Mapk signalling pathway and phosphorylation of γH2A.X in vitro and in vivo. The results of the luciferase reporter assay revealed that miR‐146 specifically downregulated p38‐Mapk14 expression. Meanwhile, co‐immunoprecipitation and Western blot analyses revealed that HFHS supplementation upregulated nuclear p38‐Mapk14 expression and consequently enhanced γH2A.X (Ser139) phosphorylation. The HFHS diet‐induced POF mouse model treated with miR‐146@PLGA exhibited downregulated p38‐Mapk14 expression in the OGCs, mitigated OGC ageing and alleviated the symptoms of POF.ConclusionsThis study demonstrated that HFHS supplementation activates the Dab2ip/Ask1/p38‐Mapk signalling pathway and promotes γH2A.X phosphorylation by inhibiting the expression of endogenous miR‐146b‐5p, which results in OGC ageing and POF development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号