首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A diet high in fructose (HFr) induces insulin resistance in animals. Free radicals are involved in the pathogenesis of HFr-induced insulin resistance. Carnosine (CAR) is a dipeptide with antioxidant properties. We investigated the effect of CAR alone or in combination with α-tocopherol (CAR?+?TOC) on HFr-induced insulin-resistant rats. Rats fed with HFr containing 60 % fructose received CAR (2 g/L in drinking water) with/without TOC (200 mg/kg, i.m. twice a week) for 8 weeks. Insulin resistance, serum lipids, inflammation markers, hepatic lipids, lipid peroxides, and glutathione (GSH) levels together with glutathione peroxidase (GSH-Px) and superoxide dismutase 1 (CuZnSOD; SOD1) activities and their protein expressions were measured. Hepatic histopathological examinations were performed. HFr was observed to cause insulin resistance, inflammation and hypertriglyceridemia, and increased triglyceride and lipid peroxide levels in the liver. GSH-Px activity and expression decreased, but GSH levels and SOD1 activity and expression did not alter in HFr rats. Hepatic marker enzyme activities in serum increased and marked macro- and microvesicular steatosis were seen in the liver. CAR treatment did not alter insulin resistance and hypertriglyceridemia, but it decreased steatosis and lipid peroxidation without any change in the antioxidant system of the liver. However, CAR?+?TOC treatment decreased insulin resistance, inflammation, hepatic steatosis, and lipid peroxidation and increased GSH-Px activity and expression in the liver. Our results may indicate that CAR?+?TOC treatment is more effective to decrease HFr-induced insulin resistance, inflammation, hepatic steatosis, and dysfunction and pro-oxidant status in rats than CAR alone.  相似文献   

2.
3.
4.
ObjectiveTo investigate how curcumin affects the glucose and lipid metabolism in type 2 diabetes mellitus (DM) rat models, and to explore its effect on the free fatty acid (FFA) and tumor necrosis factor α (TNF-α) in serum.MethodsSuccessfully established type 2 DM rats were divided into three groups, i.e. the normal control group, model group and curcumin group, and received the medication for consecutive 8 weeks. Thereafter, we detected the level of fasting blood glucose (FBG), and the blood glucose at 30 min, 60 min and 120 min; besides, we also carried out the insulin tolerance tests to measure the levels of fasting serum insulin (FINS) and blood glucose at 40 min and 90 min; additionally, we also detected the levels of TC, TG, HDL-C, LDL-C, FFA and TNF-α in serum. The results were expected to discover the mechanism of curcumin in decreasing the blood glucose level in DM rats.ResultsCompared with the model group, AUCs of FBG, blood glucose at 30 min, 60 min and 120 min, and glucose were decreased in varying degrees in the curcumin group, and the differences had statistical significance (p < .05). After subcutaneous injection of insulin, we found that the blood glucose at 40 min and 90 min in the curcumin group was decreased, while AUC of glucose level was also decreased (p < .05 or .01). Eight weeks after medication, compared with the rats in the normal group, the levels of HDL-C, LDL-C, TC and TG in rats of the model group and the curcumin group were obviously increased (p < .05). In comparison with the model group, the level of LDL-C in rats of the curcumin group was also decreased significantly (p < .05). In comparison with the normal control group in the same period, we found that the content of FFAs and TNF-α in serum of rats of the model group were elevated significantly, and the differences had statistical significance (p < .05 or .01); the levels in the curcumin group were significantly decreased in comparison with the model group in the same period, and the difference had statistical significance (p < .05 or .01).ConclusionTreatment with curcumin can significantly improve the metabolic disorder of glucose and lipid, enhance the sensitivity to the insulin, and ameliorate the resistance to insulin of the type II DM rats. Meanwhile, this treatment method can also significantly decrease the level of FFA and TNF-α in serum of type II DM rats. Thus, we inferred that the mechanism of curcumin to improve the insulin resistance might be correlated with the decreases of FFA and TNF-α in serum.  相似文献   

5.
6.
A novel series of acridine linked to thioacetamides 9a–o were synthesized and evaluated for their α-glucosidase inhibitory and cytotoxic activities. All the synthesized compounds exhibited excellent α-glucosidase inhibitory activity in the range of IC50 = 80.0 ± 2.0–383.1 ± 2.0 µM against yeast α-glucosidase, when compared to the standard drug acarbose (IC50 = 750.0 ± 1.5 µM). Among the synthesized compounds, 2-((6-chloro-2-methoxyacridin-9-yl)thio)-N-(p-tolyl) acetamide 9b displayed the highest α-glucosidase inhibitory activity (IC50 = 80.0 ± 2.0 μM). The in vitro cytotoxic assay of compounds 9a–o against MCF-7 cell line revealed that only the compounds 9d, 9c, and 9n exhibited cytotoxic activity. Cytotoxic compounds 9d, 9c, and 9n did not show cytotoxic activity against the normal human cell lines HDF. Kinetic study revealed that the most potent compound 9b is a competitive inhibitor with a Ki of 85 μM. Furthermore, the interaction modes of the most potent compounds 9b and 9f with α-glucosidase were evaluated through the molecular docking studies.  相似文献   

7.
To examine the role of the side chain of kotalanol (2), a potent natural α-glucosidase inhibitor isolated from Salacia reticulata, on inhibitory activity, four diastereomers (11a11d) with reversed configuration (S) at the C-4′ position in the side chain were synthesized and evaluated. Two of the four (11b and 11d) significantly lost their inhibitory activity against both maltase and sucrase, while the other two (11a and 11c) sustained the inhibitory activity to a considerable extent, showing distinct activity in response to the change of stereochemistry of the hydroxyls at the 5′and 6′ positions. Different activities were rationalized with reference to in silico docking studies on these inhibitors with hNtMGAM. Against isomaltase, all four analogs showed potent inhibitory activity as well as 2, and 11b and 11d exhibited enzyme selectivity.  相似文献   

8.
Starting from 11β-HSD1 inhibitors that were active ex vivo but with Cyp 3A4 liability, we obtained a new series of adamantane ureas displaying potent inhibition of both human and rodent 11β-HSD1 enzymes, devoid of Cyp 3A4 interactions, and rationally designed to provide long-lasting inhibition in target tissues. Final optimizations lead to SAR184841 with good oral pharmacokinetic properties showing in vivo activity and improvement of metabolic parameters in a physiopathological model of type 2 diabetes.  相似文献   

9.
Synthesis and evaluation of four diastereomers (9a, 9b, 9c and 9d) of kotalanol, a potent α-glucosidase inhibitor isolated from an Ayurvedic medicinal plant Salacia species, are described. Stereo-inversion at C-3' and C-4' of kotalanol (2) caused significant decrease of the inhibitory activities against maltase and sucrase, whereas inhibitory activity against isomaltase sustained, thus resulted in exerting selectivity against isomaltase.  相似文献   

10.
Branched-chain α-keto acid dehydrogenase (BCKDH) kinase (BDK) is responsible for the regulation of BCKDH complex, which is the rate-limiting enzyme in the catabolism of branched-chain amino acids (BCAAs). In the present study, we investigated the expression and activity of hepatic BDK in spontaneous type 2 diabetes using hyperinsulinemic Zucker diabetic fatty rats aged 9 weeks and hyperglycemic, but not hyperinsulinemic rats aged 18 weeks. The abundance of hepatic BDK mRNA and total BDK protein did not correlate with changes in serum insulin concentrations. On the other hand, the amount of BDK bound to the complex and its kinase activity were correlated with alterations in serum insulin levels, suggesting that hyperinsulinemia upregulates hepatic BDK. The activity of BDK inversely corresponded with the BCKDH complex activity, which was suppressed in hyperinsulinemic rats. These results suggest that insulin regulates BCAA catabolism in type 2 diabetic rats by modulating the hepatic BDK activity.  相似文献   

11.
12.
Spices are appreciated for their medicinal properties besides their use as food adjuncts to enhance the sensory quality of food. In this study, Crocus cancellatus subsp. damascenus was investigated for its antioxidant activities employing different in vitro systems. Stigma extract demonstrated a radical scavenging activity against both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals with IC50 values of 34.6 and 21.6?µg/mL and a good ferric reducing ability (53.9?µM Fe(II)/g). In order to clarify the potential functional properties of this spice, the carbohydrate-hydrolysing enzymes and pancreatic lipase inhibitory properties were investigated. Crocus cancellatus subsp. damascenus extract inhibited α-amylase and α-glucosidase with IC50 values of 57.1 and 68.6?µg/mL, respectively. The bioactivity was discussed in terms of phytochemicals content. The obtained results may be of interest from a functional point of view or as food additive and to promote the revalorization of this species.  相似文献   

13.
Bin Ma  Chun Yin  Dan Yang  Ge Lin 《Amino acids》2012,43(5):2073-2085
α-Aminoxy peptide AxyP1 has been reported to form synthetic chloride channel in living cells, thus it may have therapeutic potential for the treatment of diseases associated with chloride channel dysfunction. However, this study revealed significant gastrointestinal (GI) instability and extensive hepatic metabolism of AxyP1. To improve its GI and metabolic stability, structural modifications were conducted by replacing the isobutyl side chains of AxyP1 with methyl group (AxyP2), hydroxymethyl group (AxyP3), 4-aminobutyl group (AxyP4) and 3-carboxyl propyl group (AxyP5). Compared with AxyP1 (41 and 47 % degradation), GI stability of the modified peptides was significantly improved by 8-fold (AxyP2), 9-fold (AxyP3) and 12-fold (AxyP5) with no degradation for AxyP4 in simulated gastric fluid within 1 h, and by 12-fold (AxyP2) and 9-fold (AxyP3) with no degradation for AxyP4 and AxyP5 in simulated intestinal fluid within 3 h, respectively. The hepatic metabolic stability of the four modified peptides within 30 min in rat liver S9 preparation was also improved significantly with no metabolism of AxyP5 and threefold (AxyP2 and AxyP4) and eightfold (AxyP3) less metabolism compared with AxyP1 (39 % metabolism). Unlike hydrolysis as the major metabolism of peptides of natural α-amino acids, oxidation mediated by the cytochrome P450 enzymes, especially CYP3A subfamily, to form the corresponding mono-hydroxyl metabolites was the predominant hepatic metabolism of the five α-aminoxy peptides tested. The present findings demonstrate that structural modification can significantly improve the GI and metabolic stability of α-aminoxy peptides and thus increase their potential for therapeutic use in the treatment of chloride channel related diseases.  相似文献   

14.
<正>Type 2 diabetes mellitus is a metabolic disorder that is characterized by high blood glucose due to either insulin resistance or insulin deficiency[1].A direct correlation between D-glucose and diabetic complications has long been established,and is the focus of most research in this field.In contrast,D-Ribose has been overlooked so far as a potential risk player in the development of diabetes.  相似文献   

15.
Catalytic and inhibitor binding properties of bovine α-chymotrypsin, in which the Met-192 residue has been converted by treatment with chloramine T to the sulfoxide derivative (Met(O)192 α-chymotrypsin), have been examined relative to the native enzyme (α-chymotrypsin), between pH 4.5 and 8.0 (μ = 0.1), and/or 5.0°C and 40.0°C. Values of kcat, k+2 and/or k+3 for the hydrolysis of all the substrates examined (i.e., tMetAcONp, ZAlaONp, ZLeuONp, ZLysONp and ZTyrONp) catalyzed by native and Met(O)192 α-chymotrypsin are similar, as well as values of Km for the hydrolysis of ZLeuONp, ZLysONp and ZTyrONp. On the other hand, Ks and Km values for the hydrolysis of ZAlaONp and tMetAcONp are decreased by about 5-fold. Met-192 oxidation does not affect the kinetic and thermodynamic parameters for the (de)stabilization of the complex formed between the proteinase and the bovine basic pancreatic trypsin inhibitor. On the other hand, the recognition process between between α-chymotrypsin and the recombinant proteinase inhibitor eglin c from the leech Hirudo medicinalis is influenced by the oxidation event. Considering known molecular models, the observed catalytic and inhibitor binding properties of native and Met(O)192 α-chymotrypsin were related to the inferred stereochemistry of the proteinase-substrate and proteinase-inhibitor contact region(s).  相似文献   

16.
Xanthone derivatives have shown good α-glucosidase inhibitory activity and have drawn increased attention as potential anti-diabetic compounds. In this study, a series of novel oxazolxanthones were designed, synthesized, and investigated as α-glucosidase inhibitors. Inhibition assays indicated that compounds 421 bearing oxazole rings exhibited up to 30-fold greater inhibitory activity compared to their corresponding parent compound 1b. Among them, compounds 521 (IC50?=?6.3?±?0.4–38.5?±?4.6?μM) were more active than 1-deoxynojirimycin (IC50?=?60.2?±?6.2?μM), a well-known α-glucosidase inhibitor. In addition, the kinetics of enzyme inhibition measured by using Lineweaver–Burk analysis shows that compound 4 is a competitive inhibitor, while compounds 15, 16 and 20 are non-competitive inhibitors. Molecular docking studies showed that compound 4 bound to the active site pocket of the enzyme while compounds 15, 16, and 20 did not. More interestingly, docking simulations reveal that some of the oxazolxanthone derivatives bind to different sites in the enzyme. This prediction was further confirmed by the synergetic inhibition experiment, and the combination of representative compounds 16 and 20 at the optimal ratio of 4:6 led to an IC50 value of 1.9?±?0.7?μM, better than the IC50 value of 7.1?±?0.9?μM for compound 16 and 8.6?±?0.9?μM for compound 20.  相似文献   

17.
1. Castration of adult rats markedly decreases the amounts of polyamines (putrescine, spermidine and spermine) and of RNA and DNA in the ventral prostate and the seminal vesicle. 2. Daily injections of testosterone propionate to rats castrated 7 days previously increase polyamine and nucleic acid contents more rapidly in the seminal vesicle than in the ventral prostate. 3. After 7 days of androgen treatment, polyamine and nucleic acid contents of the seminal vesicle are significantly higher than those of intact animals. Nucleic acid, but not polyamine, contents return to normal values during the next 4 days of continued treatment. In the prostate, androgen treatment increases polyamine and nucleic acid contents to, but not above, normal values. 4. Repeated doses of alpha-difluoromethylornithine, a potent enzyme-activated irreversible inhibitor of ornithine decarboxylase, totally blocked the testosterone-induced increase of putrescine and spermidine in the ventral prostate and of putrescine in the seminal vesicle. They slowed significantly the accumulation of spermine in the ventral prostate and of spermidine in the seminal vesicle. alpha-Difluoromethylornithine also retarded the testosterone-induced accumulation of RNA in the ventral prostate. However, no clear correlation was apparent between accumulation of polyamines and of nucleic acids in the two organs. 5. alpha-Difluoromethylornithine markedly slows the testosterone-induced weight gain of the prostate, but not of the seminal vesicle. Cytological studies suggest that this effect on the prostate is due to inhibition of the androgen-induced restoration of the secretion content of prostatic acini.  相似文献   

18.
An -glucosidase cDNA clone derived from barley aleurone tissue was expressed in Pichia pastoris and Escherichia coli. The gene was fused with the N-terminal region of the Saccharomyces cerevisiae -factor secretory peptide and placed under control of the Pichia AOX1 promoter in the vector pPIC9. Enzymatically active, recombinant -glucosidase was synthesized and secreted from the yeast upon induction with methanol. The enzyme hydrolyzed maltose > trehalose > nigerose > isomaltose. Maltase activity occurred over the pH range 3.5–6.3 with an optimum at pH 4.3, classifying the enzyme as an acid -glucosidase. The enzyme had a Km of 1.88 mM and Vmax of 0.054 µmol/min on maltose. The recombinant -glucosidase expressed in E. coli was used to generate polyclonal antibodies. The antibodies detected 101 and 95 kDa forms of barley -glucosidase early in seed germination. Their levels declined sharply later in germination, as an 81 kDa -glucosidase became prominent. Synthesis of these proteins also occurred in isolated aleurones after treatment with gibberellin, and this was accompanied by a 14-fold increase in -glucosidase enzyme activity.Abbreviations: AGL, barley seed -glucosidase; rAGL, recombinant barley seed -glucosidase; BMGY, buffered glycerol-complex medium; BMMY, buffered methanol-complex medium; GA, gibberellic acid; UTR, untranslated region.  相似文献   

19.
Recent investigations have demonstrated that activation of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in liver and adipose tissue is closely related to the pathogenesis of obesity and diabetes. However, the relationship between alteration of 11β-HSD1 and the pathogenesis of type 2 diabetes in skeletal muscle is still unclear. A rat model of Type 2 diabetes was developed by high fat diet feeding combined with multiple low dose streptozotocin injection (30 mg/kg, i.p. twice). Intraperitoneal glucose tolerance test, insulin tolerance test were performed. Fasting blood glucose, fasting insulin, total cholesterol, triglyceride were measured. The protein and mRNA level of 11β-HSD1 and glucocorticoid receptor in gastrocnemius muscle were determined. The alteration of insulin signaling pathway related protein was investigated. We found that the protein levels of 11β-HSD1 and glucocorticoid receptor were significantly increased (P < 0.05); the mRNA level of 11β-HSD1 was also elevated (P < 0.05); the mRNA level of glucocorticoid receptor was decreased (P < 0.05). After insulin stimulation, diabetic rats had no significant changes in the level of the insulin receptor β-subunit (IR-β), AKT, as in phosphorylated AKT in the gastrocnemius muscle compared to its basal state. Similar results were observed in the protein expression level of glucose transporter 4 (GLUT4). Our data indicate that the alteration of 11β-HSD1 at protein and mRNA level may be related to the abnormality of insulin signal pathway in skeletal muscle, this effect may be mediated by glucocorticoid receptor.  相似文献   

20.
In recent years, the prevalence of obesity, metabolic syndrome and type 2 diabetes is increasing dramatically. They share pathophysiological mechanisms and often lead to cardiovascular diseases. The ZDSD rat was suggested as a new animal model to study diabetes and the metabolic syndrome. In the current study, we have further characterized metabolic and hepatic gene expression changes in ZDSD rats. Immuno-histochemical staining of insulin and glucagon on pancreas sections of ZDSD and control SD rats revealed that ZDSD rats have severe damage to their islet structures as early as 15 weeks of age. Animals were followed till they were 26 weeks old, where they exhibited obesity, hypertension, hyperglycemia, dyslipidemia, insulin resistance and diabetes. We found that gene expressions involved in glucose metabolism, lipid metabolism and amino acid metabolism were changed significantly in ZDSD rats. Elevated levels of ER stress markers correlated with the dysregulation of hepatic lipid metabolism in ZDSD rats. Key proteins participating in unfolded protein response pathways were also upregulated and likely contribute to the pathogenesis of dyslipidemia and insulin resistance. Based on its intact leptin system, its insulin deficiency, as well as its timeline of disease development without diet manipulation, this insulin resistant, dyslipidemic, hypertensive, and diabetic rat represents an additional, unique polygenic animal model that could be very useful to study human diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号