首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac myxoma (CM) is the most common benign cardiac tumor which is mostly sporadic. Increasing evidence show that protein-coding genes (PCGs) and long noncoding RNAs (lncRNAs) play important roles in the pathology processes of multiple cancers. However, the functional roles and regulatory mechanisms of RNAs interaction in CM are still unclear. In this study, we investigated three pairs of surgically excised CM by high throughput sequencing and screened a set of PCGs and lncRNAs which were differentially expressed and could serve as expression markers in CM. By constructing protein-protein interactions (PPI) and lncRNA-mRNA coexpressing network, we screened out a CM-related hub lncRNA-mRNA modules, which were enriched in different pathways such as MAPK and TGF-beta whose imbalance were validated by q-PCR. In addition, we identified a specific dysregulated competing endogenous RNA (ceRNA) network in CM by integrating lncRNA-miRNA-mRNA interactions. These results will help us to understand the interaction mechanisms of RNAs in CM and provide novel PCGs and lncRNAs as potential therapeutic targets for CM.  相似文献   

2.
3.
More and more evidence indicate long noncoding RNAs (lncRNAs) as competing endogenous RNAs (ceRNAs) to indirectly regulate messenger RNAs (mRNAs) by acting as microRNA (miRNA) sponges, which represents a novel layer of gene regulation that plays a critical role in the development of cancers. However, functional roles and regulatory mechanisms of lncRNA-mediated ceRNAs network in osteosarcoma are still largely unknown. Here, we comprehensively compared the expression profiles of mRNAs, lncRNAs, and miRNAs between osteosarcoma and normal samples from the Gene Expression Omnibus (GEO) to elaborate related latent mechanisms. Two lncRNAs, ie, LINC01560 and MEG3, were identified to be aberrantly expressed. Importantly, MEG3 was considered as a promising diagnostic biomarker and therapeutic target for patients with osteosarcoma according to the Kaplan-Meier analysis of another independent osteosarcoma data set from the Cancer Genome Atlas (P = 0.05). Eventually, we successfully established a dysregulated lncRNA-related ceRNA network, including one osteosarcoma-specific lncRNA, three miRNAs and four mRNAs. In conclusion, this study should be beneficial for improving our understanding of the lncRNA-mediated ceRNA regulatory mechanisms in the pathogenesis of osteosarcoma and providing it with novel candidate diagnostic and therapeutic biomarkers.  相似文献   

4.
Cholangiocarcinoma (CCA) is the second widespread liver tumor with relatively poor survival. Increasing evidence in recent studies showed long noncoding RNAs (lncRNAs) exert a crucial impact on the development and progression of CCA based on the mechanism of competing endogenous RNAs (ceRNAs). However, functional roles and regulatory mechanisms of lncRNA-regulated ceRNA in CCA, are only partially understood. The expression profile of messenger RNAs (mRNAs), lncRNAs, and microRNAs (miRNAs) downloaded from The Cancer Genome Atlas were comprehensively investigated. Differential expression of these three types of RNA between CCA and corresponding precancerous tissues were screened out for further analysis. On the basis of interactive information generated from miRDB, miRTarBase, TargetScan, and miRcode public databases, we then constructed an mRNA-miRNA-lncRNA regulatory network. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses were conducted to identify the biological function of the ceRNA network involved in CCA. As a result, 2883 mRNAs, 136 miRNAs, and 993 lncRNAs were screened out as differentially expressed RNAs in CCA. In addition, a ceRNA network in CCA was constructed, composing of 50 up and 27 downregulated lncRNAs, 14 up and 7 downregulated miRNAs, 29 up and 25 downregulated mRNAs. Finally, gene set enrichment and pathway analysis indicated our CCA-specific ceRNA network was related with cancer-related pathway and molecular function. In conclusion, our research identified a novel lncRNA-related ceRNA network in CCA, which might act as a potential therapeutic target for patients with CCA.  相似文献   

5.
Diabetic peripheral neuropathy (DPN) is considered to be the most frequent neuropathic complication of diabetes, and severely affects the quality of life of patients. Long noncoding RNAs (lncRNAs) participate in various pathophysiological processes and associate with many diseases. However, the exact impact of lncRNAs on DPN remains obscure. To discover a potential connection, a microarray study was conducted to analyze the expression profiling of lncRNAs and messenger RNAs (mRNAs) in dorsal root ganglia (DRG) from streptozotocin-induced diabetic rats with DPN. As a result, 983 lncRNAs and 1357 mRNAs were aberrantly expressed compared with control samples. Using bioinformatics analyses, we identified 558 Gene Ontology terms and 94 Kyoto Encyclopedia of Genes and Genomes pathways to be significantly enriched. Additionally, the signal-net analysis indicated that integrin receptors, including Itgb3, Itgb1, Itgb8, and Itga6, might be important players in network regulation. Furthermore, the lncRNA-mRNA network analysis showed dynamic interactions between the dysregulated lncRNAs and mRNAs. This is the first study to present an overview of lncRNA and mRNA expressions in DRG tissues from DPN rats. Our results indicate that these differentially expressed lncRNAs may have crucial roles in pathological processes of DPN by regulating their coexpressed mRNAs. The data may provide novel targets for future studies, which should focus on validating their roles in the progression of DPN.  相似文献   

6.
The aim of our study is to construct the competing endogenous RNA (ceRNA) network of head and neck squamous cell carcinoma (HNSCC) and identify key long noncoding RNAs (lncRNAs) to predict prognosis. The genes whose expression were differentially in HNSCC and normal tissues were explored by the Cancer Genome Atlas database. The ceRNA network was constructed by the Cytoscape software. The lncRNAs which could estimate the overall survival were explored from Cox proportional hazards regression. There are 1997, 589, and 82 mRNAs, lncRNAs, and miRNAs whose expression were statistically significant different, respectively. Then, the network between miRNA and mRNA or miRNA and lncRNA was constructed by miRcode, miRDB, TargetScan, and miRanda. Five mRNAs, 10 lncRNAs, and 3 miRNAs were associated with overall survival. Then, 11-lncRNAs were found to be prognostic factors. Therefore, our research analyzed the potential signature of novel 11-lncRNA as candidate prognostic biomarker from the ceRNA network for patients with HNSCC.  相似文献   

7.
This study aimed to explore long noncoding RNAs (lncRNAs) implicated in dilated cardiomyopathy (DCM). Ten samples of failing hearts collected from the left ventricles of patients with DCM undergoing heart transplants, and ten control samples obtained from normal heart donors were included in this study. After sequencing, differentially expressed genes (DEGs) and lncRNAs between DCM and controls were screened, followed with functional enrichment analysis and weighted gene coexpression network analysis (WGCNA). Five key lncNRAs were validated through real-time polymerase chain reaction (PCR). Total 1,398 DEGs were identified, including 267 lncRNAs. WGCNA identified seven modules that were significantly correlated with DCM. The top 50 genes in the three modules (black, dark-green, and green–yellow) were significantly correlated with DCM disease state. Four core enrichment lncRNAs, such as AC061961.2, LING01-AS1, and RP11–557H15.4, in the green–yellow module were associated with neurotransmitter secretion. Five core enrichment lncRNAs, such as KB-1299A7.2 and RP11–13E1.5, in the black module were associated with the functions of blood circulation and heart contraction. AC061961.2, LING01-AS1, and RP11–13E1.5 were confirmed to be downregulated in DCM tissues by real-time PCR. The current study suggests that downregulation of AC061961.2, LING01-AS1, and RP11–13E1.5 may be associated with DCM progression, which may serve as key diagnostic biomarkers and therapeutic targets for DCM.  相似文献   

8.
Long noncoding RNAs (lncRNAs) serve as competitive endogenous RNAs (ceRNAs) that play significant regulatory roles in the pathogenesis of tumors. However, the role of lncRNAs, especially the lncRNA-related ceRNA regulatory network, in glioblastoma (GBM) has not been fully elucidated. The goal of the current study was to construct lncRNA-microRNA-mRNA-related ceRNA networks for further investigation of their mechanism of action in GBM. We downloaded data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases and identified differential lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) associated with GBM. A ceRNA network was constructed and analyzed to examine the relationship between lncRNAs and patients’ overall survival. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGGs) were used to analyze the related mRNAs to indirectly explain the mechanism of action of lncRNAs. The potential effective drugs for the treatment of GBM were identified using the connectivity map (CMap). After integrated analysis, we obtained a total of 210 differentially expressed lncRNAs, 90 differentially expressed miRNAs, and 2508 differentially expressed mRNAs (DEmRNAs) from the TCGA and GEO databases. Using these differential genes, we constructed a lncRNA-associated ceRNA network. Six lncRNAs in the ceRNA network were associated with the overall survival of patients with GBM. Through KEGG analysis, it was found that the DEmRNAs involved in the network are related to cancer-associated pathways, for instance, mitogen-activated protein kinase and Ras signaling pathways. CMap analysis revealed four small-molecule compounds that could be used as drugs for the treatment of GBM. In this study, a multi-database joint analysis was used to construct a lncRNA-related ceRNA network to help identify the regulatory functions of lncRNAs in the pathogenesis of GBM.  相似文献   

9.
Long non-coding RNAs (lncRNAs) play critical roles in regulating immune-associated diseases and chronic inflammatory disorders. Here, we found that lncRNAs involve in the pathogenesis of psoriasis through integrative analysis of RNA-seq data sets from a psoriasis cohort. Then, lncRNA-protein-coding genes (PCGs) co-expression network analysis demonstrated that lncRNAs extensively interact with IFN-γ signalling pathway-associated genes. Further, we validated 3 lncRNAs associate with IFN-γ signalling pathway activation upon IFN-γ stimulated in HaCaT cells, and loss of function experiments indicate their functional roles in the activation of inflammatory cytokine genes. Additionally, microRNA target screening analysis showed that lncRNAs may regulate JAK/STAT pathway activity through complete endogenous RNA (ceRNA) mechanism. Further experimental validation of PRKCQ-AS1/STAT1/miR-545-5p regulatory circuitry showed that lncRNAs regulate the expression of JAK/STAT signalling pathway genes through competing for miR-545-5p. In summary, our results demonstrated that dysregulation of lncRNA-JAK/STAT pathway axis promotes the inflammation level in psoriasis and thus provide potential therapeutic targets for psoriasis treatments.  相似文献   

10.
11.
12.
The low survival of patients with pancreatic ductal adenocarcinoma (PDAC) makes the treatment of this disease one of the most challenging task in modern medicine. Here, by mining a large‐scale cancer genome atlas data set of pancreatic cancer tissues, we identified 21 long noncoding RNAs (lncRNAs) that significantly associated with overall survival in patients with PDAC (P < .01). Further analysis revealed that 8 lncRNAs turned out to be independently correlated with patients’ overall survival, and the risk score could be calculated based on their expression. To obtain a better predicting power, we integrated lncRNA data with a total of 410 differently expressed messenger RNAs (mRNAs) screened from PDAC and normal tissues in gene expression omnibus (GEO) database. The integration resulted in a much better panel including 8 lncRNAs (RP3.470B24.5, CTA.941F9.9, RP11.557H15.3, LINC00960, AP000479.1, LINC00635, LINC00636, and AC073133.1) and 8 mRNAs (DHRS9, ONECUT1, OR8D4, MT1M, TCN1, MMP9, DPYSL3, and TTN) to predict prognosis. A functional evaluation showed that these lncRNAs might play roles in pancreatic secretion, cell adhesion, and proteolysis. Using normal and pancreatic cancer cell lines, we confirmed that a majority of identified lncRNAs and mRNAs showed altered expressions in pancreatic cancer cells. Especially, LINC01589, LINC00960, TCN1, and MT1M showed a profoundly increased expression in pancreatic cancer cells, which suggests their potentially important role in pancreatic cancer. The results of our work indicate that lncRNAs have vital roles in PADC and provide new insights to integrate multiple kinds of markers in clinical practices.  相似文献   

13.
Prostate cancer (PCa) is the third most common reason of cancer-related deaths in men. Accumulating evidence has shown that dysregulation of long noncoding RNAs (lncRNAs) is closely related to cancer initiation and development. Although large numbers of lncRNAs have been discovered, knowledge regarding their function and physiological/pathological significance remains limited. In this study, we aimed to reveal functional lncRNAs and identify prognosis-related RNAs in PCa by analyzing data from The Cancer Genome Atlas (TCGA). To achieve this, an lncRNA-mRNA coexpression network was constructed by weighted correlation network analysis. Additionally, a subnetwork was extracted from this weighted correlation network, and seven lncRNAs were identified as core nodes. Further Kaplan-Meier survival analysis showed that three lncRNAs (LINC00683, LINC00857, and FENDRR) were significantly downregulated in PCa samples, and there was a strong positive correlation with patient survival. Importantly, LINC00683 has not been fully reported as related with PCa. Additionally, gene set enrichment analysis indicated that LINC00683 might be involved in cancer-related pathways such as the Wnt pathway. Based on the findings of this study, lncRNA LINC00683 is likely to provide a new diagnostic biomarker and therapeutic target for future PCa treatments.  相似文献   

14.
lncRNAs功能注释和预测   总被引:1,自引:0,他引:1  
随着测序技术的发展,在各种哺乳动物中发现越来越多的长非编码RNAs(long non-coding RNAs,lncRNAs),但是大部分lncRNAs的功能却未知.鉴于lncRNAs在众多生物过程如免疫反应、发育和基因印迹中表现出对蛋白编码基因和其它非编码RNAs的重要调节作用,对lncRNAs的功能研究也成为生物学家和生物信息学家研究的热点. 其中,功能注释和预测是目前研究lncRNAs功能的主要方法之一.本文主要对lncRNAs功能注释和预测方法的研究进展作一综述,包括以下几个方面:基于共表达网络的方法、基于miRNAs的方法、基于蛋白质结合的方法、基于表观遗传修饰的方法以及基于ceRNA网络的方法. 为进一步研究lncRNAs的功能提供参考,同时为开发更加有效的注释或预测方法提供线索.  相似文献   

15.

Introduction

In addition to the well-known short noncoding RNAs such as microRNAs (miRNAs), increasing evidence suggests that long noncoding RNAs (lncRNAs) act as key regulators in a wide aspect of biologic processes. Dysregulated expression of lncRNAs has been demonstrated being implicated in a variety of human diseases. However, little is known regarding the role of lncRNAs with regards to intervertebral disc degeneration (IDD). In the present study we aimed to determine whether lncRNAs are differentially expressed in IDD.

Methods

An lncRNA-mRNA microarray analysis of human nucleus pulposus (NP) was employed. Bioinformatics prediction was also applied to delineate the functional roles of the differentially expressed lncRNAs. Several lncRNAs and mRNAs were chosen for quantitative real-time PCR (qRT-PCR) validation.

Results

Microarray data profiling indicated that 116 lncRNAs (67 up and 49 down) and 260 mRNAs were highly differentially expressed with an absolute fold change greater than ten. Moreover, 1,052 lncRNAs and 1,314 mRNAs were differentially expressed in the same direction in at least four of the five degenerative samples with fold change greater than two. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for the differentially expressed mRNAs indicated a number of pathways, such as extracellular matrix (ECM)-receptor interaction. A coding-noncoding gene co-expression (CNC) network was constructed for the ten most significantly changed lncRNAs. Annotation terms of the coexpressed mRNAs were related to several known degenerative alterations, such as chondrocyte differentiation. Moreover, lncRNAs belonging to a particular subgroup were identified. Functional annotation for the corresponding nearby coding genes showed that these lncRNAs were mainly associated with cell migration and phosphorylation. Interestingly, we found that Fas-associated protein factor-1 (FAF1), which potentiates the Fas-mediated apoptosis and its nearby enhancer-like lncRNA RP11-296A18.3, were highly expressed in the degenerative discs. Subsequent qRT-PCR results confirmed the changes.

Conclusions

This is the first study to demonstrate that aberrantly expressed lncRNAs play a role in the development of IDD. Our study noted that up-regulated RP11-296A18.3 highly likely induced the over-expression of FAF1, which eventually promoted the aberrant apoptosis of disc cells. Such findings further broaden the understanding of the etiology of IDD.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-014-0465-5) contains supplementary material, which is available to authorized users.  相似文献   

16.
《Genomics》2019,111(6):1192-1200
IntroductionIt has been reported that a wide range of long non-coding RNAs (lncRNAs) are implicated in numerous diseases such as tumor, cardiopathy and neurological disorders. Identifying the differentially expressed (DE) profile of lncRNAs in cervical spondylotic myelopathy (CSM) is essential to understand the mechanisms of CSM.MethodsMicroarray assay, quantitative real-time PCR (qRT-PCR) and bioinformatics analysis were employed to reveal the DE profile and potential functions of lncRNAs in CSM.ResultsMicroarray analysis displayed the DE profiles of lncRNAs and mRNAs in rats between the CSM group and the control (CON) group. Thereinto, 1266 DE lncRNAs (738 up-regulation and 528 down-regulation) and 847 mRNAs (487 up-regulation and 360 down-regulation) with >1.1 fold change (FC) were finally identified. Moreover, 17 lncRNAs (13 up-regulation and 4 down-regulation) and 18 mRNAs (13 up-regulation and 5 down-regulation) were found deregulated by >2 FC. Further bioinformatics analysis showed the most remarkable biological processes among up-regulated RNAs contain cellular response to interferon-beta, inflammatory response and innate immune response, which may involve in CSM. Besides, related DE mRNAs of 17 DE lncRNAs in the genome were related to signaling pathway about NOD-like receptor, TNF, and apoptosis. In addition, a co-expression network of lncRNA-mRNA was established for analyzing the biological roles of lncRNAs. Among these, we found a ceRNA network related to CSM. Finally, the expressions of the DE lncRNAs and ceRNA network confirmed by qRT-PCR were in agreement with microarray data.ConclusionsOur study revealed the DE profiles of lncRNAs and mRNAs for CSM. Those dysregulated RNAs may represent potential therapeutic targets of CSM for further study.  相似文献   

17.
18.
竞争性内源RNA(ceRNA)假说是一种全新的基因表达调控模式:mRNA、假基因转录物和长链非编码RNA等转录物通过microRNA应答元件竞争结合相同的microRNA来调控各自的表达水平,从而影响细胞的功能.迄今为止,多家实验室已从生物信息学、细胞生物学和动物实验等层面验证了该假说.本文追溯了ceRNA假说提出的历程,讨论了ceRNA调控网络的影响因素,并提出了一些有待进一步完善的内容.ceRNA假说大大拓展了人类基因组中功能遗传信息的范畴,也为解析一些人类疾病发生的机制提供了新线索.  相似文献   

19.
20.
Heart failure has become one of the top causes of death worldwide. It is increasing evidence that lncRNAs play important roles in the pathology processes of multiple cardiovascular diseases. Additionally, lncRNAs can function as ceRNAs by sponging miRNAs to affect the expression level of mRNAs, implicating in numerous biological processes. However, the functional roles and regulatory mechanisms of lncRNAs in heart failure are still unclear. In our study, we constructed a heart failure‐related lncRNA‐mRNA network by integrating probe re‐annotation pipeline and miRNA‐target interactions. Firstly, some lncRNAs that had the central topological features were found in the heart failure‐related lncRNA‐mRNA network. Then, the lncRNA‐associated functional modules were identified from the network, using bidirectional hierarchical clustering. Some lncRNAs that involved in modules were demonstrated to be enriched in many heart failure‐related pathways. To investigate the role of lncRNA‐associated ceRNA crosstalks in certain disease or physiological status, we further identified the lncRNA‐associated dysregulated ceRNA interactions. And we also performed a random walk algorithm to identify more heart failure‐related lncRNAs. All these lncRNAs were verified to show a strong diagnosis power for heart failure. These results will help us to understand the mechanism of lncRNAs in heart failure and provide novel lncRNAs as candidate diagnostic biomarkers or potential therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号