首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of newly formed ribosomal proteins between cytoplasmic, nucleoplasmic, and nucleolar fractions of HeLa cells was determined. All but a few of the newly formed ribosomal proteins were concentrated 10- to 50-fold in the nucleolus and two- to fivefold in the nucleoplasm. Nevertheless, substantial amounts were found in the cytoplasm. Pretreatment of cells with actinomycin D to deplete the nucleolar pool of ribosomal precursor RNA had no effect on the concentration of newly formed ribosomal proteins in the nucleus, but did lead to an increased amount in the nucleoplasm at the expense of the nucleolus.  相似文献   

2.
3.
We used fluorescence in situ hybridization (FISH) to detect c-myc RNA subspecies in human COLO 320DM tumor cells. Although the FISH procedure removed the majority of RNAs from the nucleolus, c-myc RNA continued to be detected in both the nucleoplasm and nucleolus. This finding suggests stable association between c-myc RNA and the nucleolus. Nucleolar accumulation of c-myc RNA appeared to be temporally regulated by cell-cycle progression. Hybridization with exon- and strand-specific RNA probes indicated that the non-protein coding exon 1 plays a novel role in determining the subnuclear localization of c-myc RNA. Antisense RNA targeting exon 2 localized only with nucleoplasmic foci, where it might interact with the sense strand. Thus, c-myc gene expression may be regulated by intranuclear localization of its RNA.  相似文献   

4.
5.
Although the complex process of ribosome assembly in the nucleolus is beginning to be understood, little is known about how the ribosomal subunits move from the nucleolus to the nuclear membrane for transport to the cytoplasm. We show here that large ribosomal subunits move out from the nucleolus and into the nucleoplasm in all directions, with no evidence of concentrated movement along directed paths. Mobility was slowed compared with that expected in aqueous solution in a manner consistent with anomalous diffusion. Once nucleoplasmic, the subunits moved in the same random manner and also sometimes visited another nucleolus before leaving the nucleus.  相似文献   

6.
7.
Small nucleolar RNAs (snoRNAs) associate with specific proteins forming small nucleolar ribonucleoprotein (snoRNP) particles, which are essential for ribosome biogenesis. The snoRNAs are transcribed, processed, and assembled in snoRNPs in the nucleoplasm. Mature particles are then transported to the nucleolus. In yeast, 3'-end maturation of snoRNAs involves the activity of Rnt1p endonuclease and cleavage factor IA (CFIA). We report that after inhibition of CFIA components Rna14p and Rna15p, the snoRNP proteins Nop1p, Nop58p, and Gar1p delocalize from the nucleolus and accumulate in discrete nucleoplasmic foci. The U14 snoRNA, but not U3 snoRNA, similarly redistributes from the nucleolus to the nucleoplasmic foci. Simultaneous depletion of either Rna14p or Rna15p and the nuclear exosome component Rrp6p induces accumulation of poly(A)(+) RNA at the snoRNP-containing foci. We propose that the foci detected after CFIA inactivation correspond to quality control centers in the nucleoplasm.  相似文献   

8.
p21cip1 is a protein with a dual function in oncogenesis depending mainly on its intracellular localization: tumor suppressor in the nucleus and oncogenic in the cytoplasm. After DNA damage, p21cip1 increases and accumulates in the nucleus to ensure cell cycle arrest. We show here that the nuclear accumulation of p21cip1 is not only a consequence of its increased levels but to a DNA damage cellular response, which is ataxia telangiectasia and Rad3 related (ATR)/ataxia telangiectasia mutated (ATM) and p53 independent. Furthermore, after DNA damage, p21cip1 not only accumulates in the nucleoplasm but also in the disrupted nucleolus. Inside the nucleolus, it is found in spherical structures, which are not a protrusion of the nucleoplasm. The steady‐state distribution of p21cip1 in the nucleolus resulted from a highly dynamic equilibrium between nucleoplasmic and nucleolar p21cip1 and correlated with the inhibition of p21cip1 nuclear export. Most interestingly, inhibition of ribosomal export after expressing a dominant‐negative mutant of nucleophosmin induced p21cip1 accumulation in the nucleus and the nucleolus in the absence of DNA damage. This proved the existence of a nucleolar export route to the cytoplasm for p21cip1 in control conditions that would be inhibited upon DNA damage leading to nuclear and nucleolar accumulation of p21cip1.  相似文献   

9.
The nucleolar protein PICT1 regulates tumor suppressor p53 by tethering ribosomal protein L11 within the nucleolus to repress the binding of L11 to the E3 ligase MDM2. PICT1 depletion results in the release of L11 to the nucleoplasm to inhibit MDM2, leading to p53 activation. Here, we demonstrate that nucleolar stress induces proteasome-mediated degradation of PICT1 in a ubiquitin-independent manner. Treatment of H1299 cells with nucleolar stress inducers, such as actinomycin D, 5-fluorouridine, or doxorubicin, induced the degradation of PICT1 protein. The proteasome inhibitors MG132, lactacystin, and epoxomicin blocked PICT1 degradation, whereas the inhibition of E1 ubiquitin-activating enzyme by a specific inhibitor and genetic inactivation fail to repress PICT1 degradation. In addition, the 20 S proteasome was able to degrade purified PICT1 protein in vitro. We also found a PICT1 mutant showing nucleoplasmic localization did not undergo nucleolar stress-induced degradation, although the same mutant underwent in vitro degradation by the 20 S proteasome, suggesting that nucleolar localization is indispensable for the stress-induced PICT1 degradation. These results suggest that PICT1 employs atypical proteasome-mediated degradation machinery to sense nucleolar stress within the nucleolus.  相似文献   

10.
11.
12.
The localization of various RNA polymerase activities in the nucleoplasm and the nucleolus was investigated in isolated nuclei and in isolated nucleoli by means of a combination of cell fractionation, biochemical analysis and ultrastructural autoradiography. This resulted in four chief conclusions.
1. 1. The two main RNA polymerase activities can be localized clearly in the interphase nucleus: at low ionic strength, the activity is restricted to the nucleolus whereas at high ionic strength the activity is found in both nucleolar and nucleoplasmic regions.
2. 2. The preservation of the ultrastructure of the nuclei at high ionic strength is rather poor so that the physiological meaning of the activity revealed is questionable.
3. 3. Contrary to other reports, the nucleolar activity is significantly enhanced by increasing ammonium sulphate concentration in the presence of Mn2+.
4. 4. This increase is probably related to progressive revealing of RNA polymerase B activity within the nucleolus.
  相似文献   

13.
Biogenesis of eukaryotic ribosomes occurs mainly in a specific subnuclear compartment, the nucleolus, and involves the coordinated assembly of ribosomal RNA and ribosomal proteins. Identification of amino acid sequences mediating nucleolar localization of ribosomal proteins may provide important clues to understand the early steps in ribosome biogenesis. Human ribosomal protein S9 (RPS9), known in prokaryotes as RPS4, plays a critical role in ribosome biogenesis and directly binds to ribosomal RNA. RPS9 is targeted to the nucleolus but the regions in the protein that determine its localization remains unknown. Cellular expression of RPS9 deletion mutants revealed that it has three regions capable of driving nuclear localization of a fused enhanced green fluorescent protein (EGFP). The first region was mapped to the RPS9 N-terminus while the second one was located in the proteins C-terminus. The central and third region in RPS9 also behaved as a strong nucleolar localization signal and was hence sufficient to cause accumulation of EGFP in the nucleolus. RPS9 was previously shown to interact with the abundant nucleolar chaperone NPM1 (nucleophosmin). Evaluating different RPS9 fragments for their ability to bind NPM1 indicated that there are two binding sites for NPM1 on RPS9. Enforced expression of NPM1 resulted in nucleolar accumulation of a predominantly nucleoplasmic RPS9 mutant. Moreover, it was found that expression of a subset of RPS9 deletion mutants resulted in altered nucleolar morphology as evidenced by changes in the localization patterns of NPM1, fibrillarin and the silver stained nucleolar organizer regions. In conclusion, RPS9 has three regions that each are competent for nuclear localization, but only the central region acted as a potent nucleolar localization signal. Interestingly, the RPS9 nucleolar localization signal is residing in a highly conserved domain corresponding to a ribosomal RNA binding site.  相似文献   

14.
Eukaryotic cell nucleolus is a highly dynamic structure, which is sensitive to all changes within or outside cell borders. Numerous data are available on changes of the nucleolar structure and functions under different treatments. However, almost nothing is known about the action of translation inhibitors on the nucleolus, although these substances, together with TNF-alpha, are commonly used for apoptosis induction, both for scientific and therapeutic purposes. Emetine is one of such inhibitors. We have shown that emetine suppresses cell viability, decreases mitotic index, and induces apoptosis in HeLa cells. Emetine action is irreversible, and it sensitizes cells to unfavourable external conditions. The emetine action causes redistribution of UBF, one of RNA-polymerase I factor, from the nucleolus to nucleoplasm even after a short exposure, i.e. when the morphology of the nucleus and chromatin still keeps its native pattern. It is important that other nucleolar proteins, such as fibrillarin and B23, are not recognized in the nucleoplasm until the very late stages of apoptotic process. A suggestion is made that changes in UBF localization may be associated with the onset of ribosomal repeat cleavage and migration of rDNA-"free" fragments from the nucleolus to nucleoplasm. It looks likely that these changes can serve as an initial morphological indication of apoptosis.  相似文献   

15.
16.
D Grlich  N Pant  U Kutay  U Aebi    F R Bischoff 《The EMBO journal》1996,15(20):5584-5594
The importin-alpha/beta heterodimer and the GTPase Ran play key roles in nuclear protein import. Importin binds the nuclear localization signal (NLS). Translocation of the resulting import ligand complex through the nuclear pore complex (NPC) requires Ran and is terminated at the nucleoplasmic side by its disassembly. The principal GTP exchange factor for Ran is the nuclear protein RCC1, whereas the major RanGAP is cytoplasmic, predicting that nuclear Ran is mainly in the GTP form and cytoplasmic Ran is in the GDP-bound form. Here, we show that nuclear import depends on cytoplasmic RanGDP and free GTP, and that RanGDP binds to the NPC. Therefore, import might involve nucleotide exchange and GTP hydrolysis on NPC-bound Ran. RanGDP binding to the NPC is not mediated by the Ran binding sites of importin-beta, suggesting that translocation is not driven from these sites. Consistently, a mutant importin-beta deficient in Ran binding can deliver its cargo up to the nucleoplasmic side of the NPC. However, the mutant is unable to release the import substrate into the nucleoplasm. Thus, binding of nucleoplasmic RanGTP to importin-beta probably triggers termination, i.e. the dissociation of importin-alpha from importin-beta and the subsequent release of the import substrate into the nucleoplasm.  相似文献   

17.
18.
Human PinX1 (hPinX1) is known to interact with telomere repeat binding factor 1 (TRF1) and telomerase. Here, we report that hPinX1 regulates the nucleolar accumulation and telomeric association of TRF1. In HeLa, HA-hPinX1 was co-localized with fibrillarin, a nucleolar protein, in 51% of the transfected cells and was present in the nucleoplasm of the remaining 48%. Mutant analysis showed that the C-terminal region was important for nucleolar localization, while the N-terminus exhibited an inhibitory effect on nucleolar localization. Unlike HA- and Myc-hPinX1, GFP-hPinX1 resided predominantly in the nucleolus. Nuclear hPinX1 bound to telomeres and other repeat sequences as well but, despite its interaction with TRF1, nucleolar hPinX1 did not bind to telomeres. Nucleolar hPinX1 forced endogenous TRF1 accumulation in the nucleolus. Furthermore, TRF1 binding to telomeres was upregulated in cells over-expressing hPinX1. In an ALT cell line, WI-38 VA-13, TRF1 did not co-localize with hPinX1 in the nucleoli. In summary, hPinX1 likely interacts with TRF1 in both the nucleolus and the nucleoplasm, and excess hPinX1 results in increased telomere binding of TRF1. The PinX1 function of mediating TRF1 nucleolar accumulation is absent from ALT cells, suggesting that it might be telomerase-dependent.  相似文献   

19.
Human DNA topoisomerase I (topo I) catalyzes DNA relaxation and phosphorylates SRSF1. Whereas the structure of topo I complexed with DNA has been resolved, the structure of topo I in the complex with SRSF1 and structural determinants of topo I activities in this complex are not known. The main obstacle to resolving the structure is a contribution of unfolded domains of topo I and SRSF1 in formation of the complex. To overcome this difficulty, we employed a three-step strategy: identifying the interaction regions, modeling the complex, and validating the model with biochemical methods. The binding sites in both topo I and SRSF1 are localized in the structured regions as well as in the unfolded domains. One observes cooperation between the binding sites in topo I but not in SRSF1. Our results indicate two features of the unfolded RS domain of SRSF1 containing phosphorylated residues that are critical for the kinase activity of topo I: its spatial arrangement relative to topo I and the organization of its sequence. The efficiency of phosphorylation of SRSF1 depends on the length and flexibility of the spacer between the two RRM domains that uniquely determine an arrangement of the RS domain relative to topo I. The spacer also influences inhibition of DNA nicking, a prerequisite for DNA relaxation. To be phosphorylated, the RS domain has to include a short sequence recognized by topo I. A lack of this sequence in the mutants of SRSF1 or its spatial inaccessibility in SRSF9 makes them inadequate as topo I/kinase substrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号