首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abnormal lipid metabolism and SREBP-1 downregulation are reported to be involved in the pathogenesis of diabetic peripheral neuropathy (DPN). In the current study, the relationship between PI3K/Akt signaling pathway and SREBP-1 expression was explored in Schwann cells of DPN. The phospho-Akt (Ser 473), phospho-Akt (Thr 308), and SREBP-1 expression were inhibited in the sciatic nerves of diabetic mice versus those of normal mice, accompanied with the atrophy of nerve fiber and the irregular myelin sheath. High concentration glucose suppressed phospho-Akt (Ser 473), phospho-Akt (Thr 308), and SREBP-1 expression in cultured Schwann cell (RSC96 cell) in vitro, and 25 mmol/L glucose was enough to lead to the maximum inhibitory effect. The time-course effect of high glucose showed that Akt phosphorylation gradually decreased with the extension of stimulation time. Somewhat differently, short-term high-glucose exposure enhanced SREBP-1 expression and prolonged high-glucose stimulation reduced the SREBP-1 expression in RSC96 cells. Similarly, prolonged high-glucose stimulation also downregulated FASN messenger RNA (mRNA), ACC mRNA, intracellular triglyceride, and cholesterol. LY294002 suppressed Akt activation followed by the decreased SREBP-1, FASN, ACC, triglyceride, and cholesterol. Contrarily, the PI3K/Akt signaling pathway agonist insulin pretreatment avoided prolonged high-glucose stimulation-blocked Akt activation and increased SREBP-1, FASN, and ACC expression in the levels of protein and mRNA in RSC96 cells. The knockdown of SREBP-1 by shRNA prevented insulin-induced enhanced FASN, ACC mRNA expression, triglyceride, and cholesterol in high-glucose-treated RSC96 cells. In conclusion, prolonged high-glucose exposure inhibits the SREBP-1/FASN/ACC expression in the Schwann cells of DPN via the blockage of the PI3K/Akt signaling pathway.  相似文献   

3.
4.
5.
Pyruvate kinase M2 (PKM2) regulates the final step of glycolysis levels that are correlated with the sensitivity of anticancer chemotherapeutic drugs. THP is one of the major drugs used in non‐muscle‐invasive bladder cancer instillation chemotherapy. However, low response ratio of THP (19.7%) treatment to human genitourinary tumours using collagen gel matrix has been observed. This study aims to investigate the effect of down‐regulation of PKM2 on THP efficiency. Via inhibitor or siRNA, the effects of reduced PKM2 on the efficiency of THP were determined in 2 human and 1 murine bladder cancer cell lines, using MTT, cologenic and fluorescence approaches. Molecular mechanisms of PKM2 on THP sensitization were explored by probing p‐AMPK and p‐STAT3 levels via WB. Syngeneic orthotopic bladder tumour model was applied to evaluate this efficiency in vivo, analysed by Kaplan‐Meier survival curves, body and bladder weights plus immunohistochemistric tumour biomarkers. PKM2 was overexpressed in bladder cancer cells and tissues, and down‐regulation of PKM2 enhanced the sensitivity of THP in vitro. Activation of AMPK is essential for THP to exert anti‐bladder cancer activities. On the other hand, down‐regulating PKM2 activates AMPK and inhibits STAT3, correlated with THP sensitivity. Compared with THP alone (400 μmol L?1, 50 μL), the combination with metformin (60 mmol L?1, 50 μL) stopped growth of bladder cancer completely in vivo (combination group VS normal group P = .078). Down‐regulating the expression of PKM2 enhances the anticancer efficiency of THP. This study provides a new insight for improving the chemotherapeutic effect of THP.  相似文献   

6.
7.
8.
Expression of the HER2 oncogene is increased in approximately 30% of human breast carcinomas and is closely correlated with the expression of fatty acid synthase (FASN). In the present study, we determined the mechanism by which FASN and acetyl-CoA carboxylase alpha (ACCalpha) could be induced by HER2 overexpression. SK-BR-3 and BT-474 cells, breast cancer cells that overexpress HER2, expressed higher levels of FASN and ACCalpha compared with MCF-7 and MDA-MB-231 breast cancer cells in which HER2 expression is low. The induction of FASN and ACCalpha in BT474 cells were not mediated by the activation of SREBP-1. Exogenous HER2 expression in MDA-MB-231 cells induced the expression of FASN and ACCalpha, and the HER2-mediated increase in ACCalpha and FASN was inhibited by both LY294002, a phosphatidylinositol 3-kinase inhibitor, and rapamycin, a mammalian target of rapamycin (mTOR) inhibitor. In addition, the activation of mTOR by the overexpression of RHEB in MDA-MB-231 cells increased the synthetic rates of both FASN and ACCalpha. On the other hand, FASN and ACCalpha were reduced in BT-474 cells by a blockade of the mTOR signaling pathway. These changes observed in their protein levels were not accompanied by changes in their mRNA levels. The 5'- and 3'-untranslated regions of both FASN and ACCalpha mRNAs were involved in selective translational induction that was mediated by mTOR signal transduction. These results strongly suggest that the major mechanism of HER2-mediated induction of FASN and ACCalpha in the breast cancer cells used in this study is translational regulation primarily through the mTOR signaling pathway.  相似文献   

9.
Most breast cancers exhibit brisk lipogenesis, and require it for growth. S14 is a lipogenesis-related nuclear protein that is overexpressed in most breast cancers. Sterol response element-binding protein-1c (SREBP-1c) is required for induction of lipogenesis-related genes, including S14 and fatty acid synthase (FAS), in hepatocytes, and correlation of SREBP-1c and FAS expression suggested that SREBP-1c drives lipogenesis in tumors as well. We directly tested the hypothesis that SREBP-1c drives S14 expression and mediates lipogenic effects of progestin in T47D breast cancer cells. Dominant-negative SREBP-1c inhibited induction of S14 and FAS mRNAs by progestin, while active SREBP-1c induced without hormone and superinduced in its presence. Changes in S14 mRNA were reflected in protein levels. A lag time and lack of progestin response elements indicated that S14 and FAS gene activation by progestin is indirect. Knockdown of S14 reduced, whereas overexpression stimulated, T47D cell growth, while nonlipogenic MCF10a mammary epithelial cells were not growth-inhibited. These data directly demonstrate that SREBP-1c drives S14 gene expression in breast cancer cells, and progestin magnifies that effect via an indirect mechanism. This supports the prediction, based on S14 gene amplification and overexpression in breast tumors, that S14 augments breast cancer cell growth and survival.  相似文献   

10.
Obesity is one of the most serious health problems in the world, increasing the risk of other chronic diseases. Alterations in fatty acid synthesis related genes are crucially involved in obesity progression. Diosgenin (DG) was one of the phytosterols compounds with vital activity against lipid disorders. Therefore, this study was intended to evaluate the protective effect of DG on lipogenesis in the high-fat diet (HFD)-induced obesity in mice, via investigating the expression of two of the fatty acid synthesis–involved genes; sterol regulatory element-binding protein (SREBP-1c) and fatty acid synthase (FASN) genes. Thirty adult male mice were divided into 3 groups. Control group, fed with normal diet; HFD group, mice fed with a high-fat diet and HFD + DG group, mice fed with a high-fat diet and supplemented in parallel with DG for 6 consecutive weeks. The effect of DG on Body weights, liver enzymes, lipid profile, were evaluated. Histopathological fatty changes as well as SREBP-1c and FASN gene expression were also investigated. DG significantly alleviated body weight gain, adjusted liver enzymes, and improved lipid profile. Additionally, DG ameliorated the histopathological changes by reducing the lipid vacuoles and hence the hepatosteatosis. Accordingly, DG significantly downregulated the two-fold increase in the SREBP-1c and FASN gene expression observed in the HFD group. In conclusion, DG possesses a beneficial impact against diet-induced obesity in mice, which makes it a good candidate for NAFLD and obesity prevention.  相似文献   

11.
12.
13.
目的: 研究脂肪酸合成酶(FASN)表达对膀胱癌UMUC3细胞增殖、迁移、侵袭的影响,探讨其内在可能机制。方法:免疫组化法检测30例膀胱癌和15例正常膀胱组织FASN蛋白的表达;用脂质体2000分别转染FASN siRNA和无义siRNA至UMUC3细胞,筛选、鉴定siFASN和siControl稳定的细胞,siFASN组细胞设为实验组,siControl组设为对照组;采用蛋白印迹法(Western blot)和实时荧光定量PCR(RT-PCR)法分别检测siFASN组和siControl组细胞FASN蛋白及mRNA的表达,MTT法检测siFASN组和siControl组细胞增殖情况,划痕试验、Transwell试验分别检测siFASN组和siControl组细胞迁移、侵袭能力。结果:FASN蛋白在膀胱癌组织中过表达,且与病理分期、分级密切相关(P<0.05)。与siControl组相比,siFASN组细胞FASN mRNA及蛋白表达下调(P<0.05),细胞增殖活力明显下降(P<0.05),迁移能力明显下降(P<0.05),穿膜细胞数量明显减少(P<0.05)。结论:FASN过表达在膀胱癌发生、发展中发挥重要作用,下调FASN表达能抑制膀胱癌细胞的增殖、迁移、侵袭能力,抑制FASN表达有望成为一种新的膀胱癌治疗方法。  相似文献   

14.
Iqbal MA  Bamezai RN 《PloS one》2012,7(5):e36764
Metabolism of cancer cells with pyruvate kinase M2 (PKM2) at its centre stage has assumed a prime significance in cancer research in recent times. Cancer cell metabolism, characterized by enhanced glucose uptake, production of lactate and anabolism is considered an ideal target for therapeutic interventions. Expression of PKM2 switches metabolism in favor of cancer cells, therefore, the present study was designed to investigate the hitherto unknown effect of resveratrol, a phytoalexin, on PKM2 expression and resultant implications on cancer metabolism. We observed that resveratrol down-regulated PKM2 expression by inhibiting mTOR signaling and suppressed cancer metabolism, adjudged by decreased glucose uptake, lactate production (aerobic glycolysis) and reduced anabolism (macromolecule synthesis) in various cancer cell lines. A contingent decrease in intracellular levels of ribose-5-phosphate (R5P), a critical intermediate of pentose phosphate pathway, accounted for a reduced anabolism. Consequently, the state of suppressed cancer metabolism resulted in decreased cellular proliferation. Interestingly, shRNA-mediated silencing of PKM2 inhibited glucose uptake and lactate production, providing evidence for the critical role of PKM2 and its mediation in the observed effects of resveratrol on cancer metabolism. Further, an over-expression of PKM2 abolished the observed effects of resveratrol, signifying the role of PKM2 downregulation as a critical function of resveratrol. The study reports a novel PKM2-mediated effect of resveratrol on cancer metabolism and provides a new dimension to its therapeutic potential.  相似文献   

15.
目的:探讨shPLCε对膀胱癌T24细胞瓦伯格效应的影响及其相关机制。方法:(1)慢病毒感染T24细胞,葡萄糖测定试剂盒和乳酸测试盒分别检测细胞葡萄糖利用和乳酸生成情况;q-PCR、Western blot分别检测PLCε、CDC25A及瓦伯格效应相关分子的表达。(2)转染sh CDC25A质粒,q-PCR、Western blot检测CDC25A的表达;Western blot检测瓦伯格效应相关分子的表达情况。结果:(1)慢病毒干扰PLCε后,T24细胞利用葡萄糖和生成乳酸的能力降低,同时下调CDC25A、PKM2、GLUT1、LDHA的表达。(2)干扰CDC25A的表达后可抑制PKM2、GLUT1、LDHA的表达。结论:shPLCε通过下调关键分子CDC25A的表达抑制膀胱癌T24细胞的瓦伯格效应,从而为膀胱癌的治疗提供了新思路。  相似文献   

16.
Poly (ADP-ribose) polymerase inhibitors (PARPi) have showed clinical benefit as maintenance therapy in advanced ovarian cancer by impairing the homologous recombination (HR) pathway. Pyruvate kinase M2 (PKM2), the significant cancer metabolic biomarker, integrates with DNA damage to directly promote HR. We aimed to investigate the role and molecular mechanism of PKM2 downregulation on sensitization of ovarian cancer cells to PARPi. Inhibitory effects in vitro were assessed by cell viability, clone formation, transwell assay, and flow cytometry. Downregulation of PKM2 by siRNA or small molecular inhibitor shikonin (Sk) enhanced anti-tumour activity of olaparib (Ola) in ovarian cancer cells. Silencing PKM2 or Sk synergized with Ola and reduced cell growth, colony formation and migration, and induced apoptosis. Western blot and immunofluorescence demonstrated that inhibition of PKM2 amplified Ola-induced γH2AX and phospho-ATM (p-ATM) activation and interfered with BRCA1 accumulation in the nucleus. A xenograft animal model demonstrated in vivo antitumor combination effect of Sk and Ola. Furthermore, Western blot and immunofluorenscent analyses of tissue samples revealed that treatment of Sk increased DNA damage, reduced expression of BRCA1 and PKM2. Therefore, this study identified that PKM2 downregulation is a novel therapeutic strategy to enhance Ola effectiveness in treating ovarian cancer.  相似文献   

17.
18.
19.
Epiberberine (EPI), extracted from Rhizome Coptidis, has been shown to attenuate hyperlipidemia in vivo. Herein we have studied the mechanism by which EPI is active against non-alcoholic steatohepatitis (NASH) using, mice fed on a methionine- and choline-deficient (MCD) diet and HepG2 cells exposed to free fatty acids (FFA). We show that small heterodimer partner (SHP) protein is key in the regulation of lipid synthesis. In HepG2 cells and in the livers of MCD-fed mice, EPI elevated SHP levels, and this was accompanied by a reduction in sterol regulatory element-binding protein-1c (SREBP-1c) and FASN. Therefore, EPI reduced triglyceride (TG) accumulation in steatotic hepatocytes, even in HepG2 cells treated with siRNA-SHP, and also improved microbiota. Thus, EPI suppresses hepatic TG synthesis and ameliorates liver steatosis by upregulating SHP and inhibiting the SREBP1/FASN pathway, and improves gut microbiome.  相似文献   

20.
Cells under hypoxic stress either activate an adaptive response or undergo cell death. Although some mechanisms have been reported, the exact mechanism behind hypoxic cell death remains unclear. Recently, increased expression of fatty acid synthase (FASN) has been observed in various human cancers. In highly proliferating cells, tumor‐associated FASN is considered necessary for both membrane lipids production and post‐translational protein modification, but the exact mechanisms are not fully understood. Further, FASN overexpression is associated with aggressive and malignant cancer diseases and FASN inhibition induces apoptosis in cancer cells. For this reason, FASN is emerging as a key target for the potential diagnosis and treatment of various cancers. Here, we observed decreased FASN expression under hypoxic cell death conditions in HepG2 cells. Thus, we examined the effect of decreased FASN expression on hypoxia‐induced cell death in HepG2 cells and also investigated the mechanism responsible for reduction of FASN expression under hypoxic cell death conditions. As a result, reduction of FASN expression resulted in hypoxic cell death via malonyl‐CoA accumulation. In addition, SREBP‐1 restored FASN reduction and hypoxia‐induced apoptosis. Taken together, we suggest that hypoxic cell death is promoted by the reduced expression of FASN through SREBP‐1 down‐regulation. J. Cell. Biochem. 113: 3730–3739, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号