首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
摘要 目的:探究lncRNA SLC2A1反义RNA 1(SLC2A1 antisense RNA 1,SLC2A1-AS1)在卵巢癌中的表达情况及与卵巢癌患者预后之间的关系,为卵巢癌的诊断和预后提供一种新的生物标志物。方法:通过多个数据库中的卵巢癌样本信息及其实时荧光定量PCR(Real Time Quantitative PCR,RT-qPCR)分别探究SLC2A1-AS1在卵巢癌中的表达情况及其与卵巢癌患者预后之间的关系,通过免疫荧光实验和划痕实验探究SLC2A1-AS1的表达对卵巢癌细胞的增殖和迁移的影响。通过基因本体(Gene ontology,GO)和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)分析寻找SLC2A1-AS1影响卵巢癌恶性进程的可能机制。结果:基于多个数据库中的生物信息学分析和RT-qPCR验证发现SLC2A1-AS1在卵巢癌中异常低表达,且SLC2A1-AS1低表达与卵巢癌患者的不良预后密切相关。SLC2A1-AS1过表达可明显抑制卵巢癌细胞的增殖和迁移能力。基于GO和KEGG分析,发现SLC2A1-AS1可能通过调控细胞外基质(extracellular matrix,ECM)组分以及ECM受体的相互作用通路抑制卵巢癌的恶性进程。结论:SLC2A1-AS1可能作为一种关键的潜在的生物标志物抑制着卵巢癌的恶性进展。  相似文献   

2.
The present study investigated the potential interaction between miR-526b and lncRNA SLC16A1-AS1 in triple-negative breast cancer (TNBC). Expression of miR-526b and SLC16A1-AS1 in TNBC tumor tissues and paired nontumor tissues from 60 TNBC patients was detected by real-time polymerase chain reaction (RT-qPCR). The interaction between miR-526b and SLC16A1-AS1 was evaluated with overexpression experiments, followed by RT-qPCR. The proliferation and migration of cells were detected with cell counting kit-8 assay and Transwell assay, respectively. Apoptosis of cells was assessed by cell apoptosis assay. The expression of apoptosis-related proteins was quantified by Western blot analysis. MiR-526b was predicted to bind with SLC16A1-AS1. Overexpression of miR-526b in TNBC cells decreased the expression levels of SLC16A1-AS1, while overexpression of SLC16A1-AS1 did not affect the expression of miR-526b. In TNBC tissues, miR-526b was downregulated in TNBC tissues, while SLC16A1-AS1 was upregulated in TNBC tissues compared to that in nontumor tissues. The expression of SLC16A1-AS1 and miR-526b were inversely correlated. In vitro experiments showed that overexpression of SLC16A1-AS1 promoted cell proliferation and invasion but suppressed cell apoptosis. MiR-526b played an opposite role and suppressed the function of SLC16A1-AS1. MiR-526b is downregulated in TNBC and it targets SLC16A1-AS1 to regulate proliferation, apoptosis, and invasion of TNBC cells.  相似文献   

3.
Papillary thyroid carcinoma (PTC) is recognized as one of the most prevalent types of thyroid cancer with poor prognosis. Long noncoding RNA (lncRNA) has undergone an intensive study for their involvement in tumor treatment. This study intends to unravel the association of lncRNA SLC26A4-AS1 with PTC. Initially, PTC-related expression profiling data (GSE33630) was utilized to screen differentially expressed lncRNAs in PTC and the underlying mechanisms involved with the mitogen-activated protein kinase (MAPK) pathway. Moreover, PTC tumor tissues and paracancerous tissues were arranged to determine expressions of TP53, SLC26A4-AS1, and genes related to epithelial–mesenchymal transition (EMT) and the MAPK pathway. Furthermore, SLC26A4-AS1 was overexpressed or underexpressed and JNK was underexpressed through cell transfection to examine the effect of SLC26A4-AS1 on PTC via MAPK pathway. Besides, tumor formation in nude mice was used to verify the fore experiment. LncRNA SLC26A4-AS1 regulating TP53 had the potential to participate in PTC by regulating the MAPK pathway. SLC26A4-AS1 was expressed poorly in PTC. Notably, SLC26A4-AS1 elevated E-cadherin expression while it reduced that of ERK and Vimentin. In addition, the overexpression of SLC26A4-AS1 inactivated the MAPK pathway by promoting TP53 and decreased cell migration, proliferation, and invasion. In addition to all these effects, the overexpression of SLC26A4-AS1 promoted apoptosis of TPC-1 cells. Additionally, the overexpression of lncRNA SLC26A4-AS1 reduced xenograft tumor volume in nude mice. Furthermore, the effect of SLC26A4-AS1 overexpression was found to be promoted after the MAPK pathway inactivation. Taken together, the overexpression of lncRNA SLC26A4-AS1 coffered anti-oncogenic effects on PTC through the inactivation of the MAPK pathway.  相似文献   

4.
Papillary thyroid carcinoma (PTC), accounting for approximately 85% cases of thyroid cancer, is a common endocrine tumour with a relatively low mortality but an alarmingly high rate of recurrence or persistence. Long non-coding RNAs (lncRNAs) is emerging as a critical player modulating diverse cellular mechanisms correlated with the progression of various cancers, including PTC. Herein, we aimed to investigate the role of lncRNA SLC26A4-AS1 in regulating autophagy and tumour growth during PTC progression. Initially, ITPR1 was identified by bioinformatics analysis as a differentially expressed gene. Then, Western blot and RT-qPCR were conducted to determine the expression of ITPR1 and SLC26A4-AS1 in PTC tissues and cells, both of which were found to be poorly expressed in PTC tissues and cells. Then, we constructed ITPR1-overexpressing cells and revealed that ITPR1 overexpression could trigger the autophagy of PTC cells. Further, we performed a series of gain- and loss-of function experiments. The results suggested that silencing of SLC26A4-AS1 led to declined ITPR1 level, up-regulation of ETS1 promoted ITPR1 expression, and either ETS1 knockdown or autophagy inhibitor Bafilomycin A1 could mitigate the promoting effects of SLC26A4-AS1 overexpression on PTC cell autophagy. In vivo experiments also revealed that SLC26A4-AS1 overexpression suppressed PTC tumour growth. In conclusion, our study elucidated that SLC26A4-AS1 overexpression promoted ITPR1 expression through recruiting ETS1 and thereby promotes autophagy, alleviating PTC progression. These finding provides insight into novel target therapy for the clinical treatment of PTC.  相似文献   

5.
6.
The glutamine amino acid transporter solute carrier family 38 member 1 (SLC38A1) is associated with the occurrence and progression of solid tumors. However, it has not yet been assessed in patients with hematologic malignancy. Herein, we investigated SLC38A1 expression and explored its clinical implications in acute myeloid leukemia (AML). The results showed that patients with high SLC38A1 expression had a lower mutation rate of NPM1 gene and higher incidence of adverse-risk karyotype (p = 0.0010 and 0.0051, respectively). Patients with a high level of SLC38A1 expression presented significantly shorter overall survival in whole-cohort, chemotherapy-only, and non-inv(16) AML (p = 0.0049, 0.0247, and 0.0005 respectively). Moreover, both univariate and multivariate analyses showed that high SLC38A1 expression was an independent unfavorable prognostic biomarker for AML (p = 0.0057 and 0.0483, respectively). In summary, our study revealed SLC38A1 as a valuable prognostic and predictive marker for AML. Further, glutamine transporter SLC38A1 might serve as a potential target for the development of novel therapeutic drugs in the treatment of AML.  相似文献   

7.
长非编码RNA SLC25A25-AS1在结直肠癌的发展中具有肿瘤抑制作用,然而,其在宫颈癌中作用机制有待深入研究.本文研究了宫颈癌和宫颈上皮内瘤变(cervical intraepithelial neoplasia,CIN)病人血清中SLC25A25-AS1的异常表达,并探讨了SLC25A25-AS1在宫颈癌发展中...  相似文献   

8.
Circulating cell-free DNA (cfDNA) has been considered as a diagnostic source to track genetic and epigenetic alterations in cancer. We aimed to study mutation in addition to the methylation status in the promoter regions of RASSF1 and SLC5A8 genes in tissues and circulating free DNA samples of patients affected with papillary thyroid carcinoma (PTC) and thyroid nodules as controls. BRAFV600E mutation was studied by ARMS-scorpion real-time polymerase chain reaction method in 57 PTC and 45 thyroid nodule cases. Methylation status of RASSF1 and SLC5A8 promoter regions was analyzed by methylation-specific high-resolution melting curve analysis. BRAFV600E mutation was found in 39 (68.4%) out of 57 PTC tissue samples, while in 33 (49.1%) cases of cfDNA, this mutation was detected. The frequency of BRAFV600E mutation in cfDNA was significantly different between metastatic and nonmetastatic PTC cases (22 of 33 PTC cases vs. 5 of 34 thyroid nodule samples). Methylation levels of three promoter regions of SLC5A8 and proximal promoter region of RASSF1 was significantly different between PTC and thyroid nodule cases in both cfDNA and tissue DNA. In addition, the methylation status of these two genes in tissue DNA was reflected in methylation status observed in cfDNA. This study confirmed that BRAFV600E mutation is better for discrimination between papillary thyroid carcinoma and thyroid nodules. On the other hand, hypermethylation in the more proximal promoter regions to RASSF1 and SLC5A8 genes showed higher sensitivity and more acceptable specificity for this discrimination.  相似文献   

9.
Pyroglutamate, also known as 5-oxoproline, is a structural analog of proline. This amino acid derivative is a byproduct of glutathione metabolism, and is reabsorbed efficiently in kidney by Na+-coupled transport mechanisms. Previous studies have focused on potential participation of amino acid transport systems in renal reabsorption of this compound. Here we show that it is not the amino acid transport systems but instead the Na+-coupled monocarboxylate transporter SLC5A8 that plays a predominant role in this reabsorptive process. Expression of cloned human and mouse SLC5A8 in mammalian cells induces Na+-dependent transport of pyroglutamate that is inhibitable by various SLC5A8 substrates. SLC5A8-mediated transport of pyroglutamate is saturable with a Michaelis constant of 0.36 ± 0.04 mM. Na+-activation of the transport process exhibits sigmoidal kinetics with a Hill coefficient of 1.8 ± 0.4, indicating involvement of more than one Na+ in the activation process. Expression of SLC5A8 in Xenopuslaevis oocytes induces Na+-dependent inward currents in the presence of pyroglutamate under voltage-clamp conditions. The concentration of pyroglutamate necessary for induction of half-maximal current is 0.19 ± 0.01 mM. The Na+-activation kinetics is sigmoidal with a Hill coefficient of 2.3 ± 0.2. Ibuprofen, a blocker of SLC5A8, suppressed pyroglutamate-induced currents in SLC5A8-expressing oocytes; the concentration of the blocker necessary for causing half-maximal inhibition is 14 ± 1 μM. The involvement of SLC5A8 can be demonstrated in rabbit renal brush border membrane vesicles by showing that the Na+-dependent uptake of pyroglutamate in these vesicles is inhibitable by known substrates of SLC5A8. The Na+ gradient-driven pyroglutamate uptake was stimulated by an inside-negative K+ diffusion potential induced by valinomycin, showing that the uptake process is electrogenic.  相似文献   

10.
11.
《Biomarkers》2013,18(3):217-220
Previous studies have revealed that genetic factors may be involved in regulating folate turnover, e.g. methylenetetrahydrofolate reductase polymorphism in the development of male infertility. Folate transporter, encoded by the SLC19A1 gene, commonly referred to as reduced folate carrier (RFC) is a transmembrane protein, which transfers hydrophilic folates across the cell membrane. It was hypothesized that common polymorphism within the SLC19A1 gene (rs1051266:G>A, 80G>A) may alter RFC function. The aim of this study was to investigate a potential association between the SLC19A1 80G>A polymorphism and male infertility in a case–control study. The SLC19A1 80G>A polymorphism was determined by means of a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) assay in 213 infertile Caucasian men and 226 ethnically matched controls. The distribution of SLC19A1 genotypes in the infertile men was as follows: GG 26.8%, GA 51.2%, AA 22.1% and in fertile men: GG 24.8%, GA 50.4%, AA 24.8%, and was comparable in the both the evaluated groups. Odds ratios (95% confidence interval, CI): 0.90 (0.59–1.38) and 0.88 (0.56–1.36) for dominant and recessive models remained non-significant, also after adjustment for age: 0.89 (0.57–1.37) and 0.80 (0.51–1.25), respectively. Our study demonstrated that polymorphism 80G>A of the SLC19A1 gene is not associated with male infertility.  相似文献   

12.
Bovine tuberculosis (BTB) is a considerable health threat to livestock keepers and general communities in many developing countries. Information on genetic resistance or susceptibility because of polymorphisms of candidate genes could be used in making selection decisions for breeding disease tolerant/resistant animals. Here, we investigated associations between polymorphisms at the solute carrier family 11 (proton‐coupled divalent metal ion transporters), member 1 gene (SLC11A1, previously known as natural resistant associated macrophage protein 1, NRAMP1), with BTB phenotypes in Chadian cattle. Phenotypes were (i) single intradermal comparative cervical tuberculin test (SICCT) outcome, (ii) presence of gross visible lung lesions, (iii) a bacteriological culture test outcome and (iv) a predicted true BTB infection status using a Bayesian model. All traits were recorded as binary (presence or absence) traits. A total of 211 cattle were genotyped for a microsatellite within the SLC11A1 candidate gene. Standard linear and threshold‐liability models regressing BTB traits on copy number of SLC11A1 alleles revealed statistically significant effects of SLC11A1 alleles (P < 0.001) on most BTB traits. Polymorphisms (alleles 211, 215 and 217) are significantly related to lower incidence of BTB traits in Chadian cattle. This is the first study to report the association of SLC11A1 gene polymorphisms with BTB traits in Chadian or any other African cattle breeds.  相似文献   

13.
Lu  Hengxiao  Wang  Hao  Sun  Peidao  Wang  Jiang  Li  Shuhai  Xu  Tongzhen 《Cytotechnology》2021,73(3):483-496

We investigated the role of miR-522-3p in thymoma-associated myasthenia gravis (TAMG), and the mechanism of action in T cells. The miR-522-3p expression in normal serum, non-thymoma MG patient serum and TAMG patient serum and tissues was detected by quantitative real-time PCR (qRT-PCR), respectively. We assessed miR-522-3p expression in Jurkat cells and human CD4+ T cells after activation by anti-CD3 and anti-CD28 using qRT-PCR. The viability, proliferation, cycle distribution and the levels of CD25, CD69, interleukin-2 (IL-2) and IL-10 in transfected Jurkat cells were detected by Cell counting kit-8, 5-ethynyl-2′-deoxyuridine (EdU), flow cytometry, qRT-PCR, respectively. Targeting relationships of miR-522-3p and SLC31A1 were predicted and validated by bioinformatics analysis and dual-luciferase reporter. The viability, proliferation, cycle distribution and the levels of SLC31A1, CD25, CD69, IL-2 and IL-10 in transfected Jurkat cells were detected by above methods and western blot. The miR-522-3p expression was declined in TAMG and activated T cells. MiR-522-3p inhibitor promoted cell viability, EdU positive cells, cycle progression, and the level of CD25, CD69, IL-2 and IL-10 in Jurkat cells, while the effect of miR-522-3p mimic was the opposite. SLC31A1 was targeted by miR-522-3p, and miR-522-3p inhibited SLC31A1 expression. Overexpressed SLC31A1 reversed the inhibitory effects of miR-522-3p mimic on cell viability, EdU positive cell, cycle progression, and the levels of IL-2 and IL-10 in transfected Jurkat cells. MiR-522-3p expression was down-regulated in TAMG, and miR-522-3p inhibited proliferation and activation by regulating SLC31A1 expression in T cells.

  相似文献   

14.
Accumulating evidence has shown the critical role of long non-coding RNAs (lncRNAs) during cancer progression. However, the involvement of ELF3-AS1 in bladder cancer (BC) remains largely unclear. By lncRNA profiling, we identified ELF3-AS1 as a novel oncogenic lncRNA during bladder cancer development. ELF3-AS1 was highly expressed in bladder cancer and correlated with poor prognosis. ELF3-AS1 could increase viability and migration of bladder cancer cells in vitro and promoted xenograft tumor growth in vivo. Furthermore, ELF3-AS1 could interact with KLF8 to stabilize KLF8 by protecting it from proteasome-mediated degradation. KLF8 in turn could bind ELF3-AS1 promoter and transactivate ELF3-AS1 expression. The positive feedback loop between ELF3-AS1 and KLF8 enhanced KLF8 signaling by increasing MMP9 expression. Collectively, our study has unraveled a novel mechanism of ELF3-AS1-mediated oncogenesis in bladder cancer by reinforcement of ELF3-AS1/KLF8 signaling with potential implications for therapeutic intervention.  相似文献   

15.
Janus-activated kinase-2 (JAK2) participates in the regulation of the Na+-coupled glucose transporter SGLT1 and the Na+-coupled amino acid transporter SLC6A19. Concentrative cellular creatine uptake is similarly accomplished by Na+-coupled transport. The carrier involved is SLC6A8 (CreaT). The present study thus explored whether JAK2 regulates the activity of SLC6A8. To this end, cRNA encoding SLC6A8 was injected into Xenopus oocytes with or without cRNA encoding wild-type JAK2, constitutively active V617FJAK2 or inactive K882EJAK2. Electrogenic creatine transport was determined in those oocytes by dual-electrode voltage-clamp experiments. In oocytes injected with cRNA encoding SLC6A8 but not in oocytes injected with water or with cRNA encoding JAK2 alone, addition of 1 mM creatine to the extracellular bath generated an inward current (I crea). In SLC6A8 expressing oocytes I crea was significantly decreased by coexpression of JAK2 or V617FJAK2 but not by coexpression of K882EJAK2. According to kinetic analysis, coexpression of JAK2 decreased the maximal transport rate without significantly modifying the affinity of the carrier. In oocytes expressing SLC6A8 and V617FJAK2 I crea was gradually increased by the JAK2 inhibitor AG490 (40 μM). In SLC6A8 and JAK2 coexpressing oocytes the decline of I crea following disruption of carrier insertion with brefeldin A (5 μM) was similar in the absence and presence of JAK2. In conclusion, JAK2 is a novel regulator of the creatine transporter SLC6A8, which downregulates the carrier, presumably by interference with carrier protein insertion into the cell membrane.  相似文献   

16.
Attention‐deficit hyperactivity disorder (ADHD) is one of the most common neuropsychiatric disorders in children and adolescents with high heritability. Evidence is accumulating that SLC1A3 may play a role in ADHD etiology. Therefore, a two‐stage case‐control study was conducted on 752 cases and 774 controls to explore the role of SLC1A3 in ADHD. Bioinformatic annotations and functional experiments were applied to reveal the potential biological mechanisms. Finally, SLC1A3 rs1049522 showed significant association with ADHD risk in two stages with CA genotype vs AA genotype, odds ratio (OR) = 0.694 (95% confidence interval, CI = 0.570‐0.844) and dominant model, OR = 0.749 (95% CI = 0.621‐0.904) in the combined stage. Besides, rs1049522 was found to be related to ADHD hyperactive/impulsive symptom, and rs1049522‐C showed increased SLC1A3 mRNA expression in the cerebellar cortex. Dual‐luciferase reporter assay further indicated that rs1049522‐C allele enhanced SLC1A3 expression by disrupting the hsa‐miR‐3171 binding site. In conclusion, SLC1A3 variant rs1049522 was implicated in ADHD susceptibility in a Chinese Han population probably by enhancing the SLC1A3 expression in a miRNA‐mediated manner.  相似文献   

17.
18.
SLC19A2 and SLC19A3, also known as thiamine transporters (THTR) 1 and 2, respectively, transport the positively charged thiamine (vitamin B1) into cells to enable its efficient utilization. SLC19A2 and SLC19A3 are also known to transport structurally unrelated cationic drugs, such as metformin, but whether this charge selectivity extends to other molecules, such as pyridoxine (vitamin B6), is unknown. We tested this possibility using Madin-Darby canine kidney II (MDCKII) cells and human embryonic kidney 293 (HEK293) cells for transfection experiments, and also using Caco-2 cells as human intestinal epithelial model cells. The stable expression of SLC19A2 and SLC19A3 in MDCKII cells (as well as their transient expression in HEK293 cells) led to a significant induction in pyridoxine uptake at pH 5.5 compared with control cells. The induced uptake was pH-dependent, favoring acidic conditions over neutral to basic conditions, and protonophore-sensitive. It was saturable as a function of pyridoxine concentration, with an apparent Km of 37.8 and 18.5 μm, for SLC19A2 and SLC19A3, respectively, and inhibited by the pyridoxine analogs pyridoxal and pyridoxamine as well as thiamine. We also found that silencing the endogenous SLC19A3, but not SLC19A2, of Caco-2 cells with gene-specific siRNAs lead to a significant reduction in carrier-mediated pyridoxine uptake. These results show that SLC19A2 and SLC19A3 are capable of recognizing/transporting pyridoxine, favoring acidic conditions for operation, and suggest a possible role for these transporters in pyridoxine transport mainly in tissues with an acidic environment like the small intestine, which has an acidic surface microclimate.  相似文献   

19.
Long noncoding RNA (lncRNA) HAND2-AS1 is a well-characterized tumor suppressor in several types of malignancies, while its role in esophagus squamous cell carcinoma (ESCC) is unknown. In this study, we found that lncRNA HAND2-AS1 was downregulated, while microRNA-21 ( miRNA-21) was upregulated in tumor tissues than in adjacent healthy tissues of ESCC patients. Expression levels of lncRNA HAND2-AS1 and miRNA-21 were significantly and inversely correlated in tumor tissues but not in healthy tissues. Plasma levels of lncRNA HAND2-AS1 were lower in ESCC patients than in healthy controls, and downregulation of plasma lncRNA HAND2-AS1 distinguished early stage ESCC patients from healthy controls. lncRNA HAND2-AS1 overexpression resulted in downregulation of miRNA-21 in cells of ESCC cell lines and inhibited cell proliferation, migration, and invasion. miRNA-21 overexpression failed to affect lncRNA HAND2-AS1 expression but significantly attenuated the inhibitory effect of lncRNA HAND2-AS1 overexpression on cancer cell proliferation, migration, and invasion. Therefore, lncRNA HAND2-AS1 may inhibit cancer cell proliferation, migration, and invasion in ESCC by regulating miRNA-21.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号