首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Resveratrol is a naturally occurring anticancer compound present in grapes and wine with antiproliferative properties against breast cancer cells and xenografts. Our objective was to investigate the metabolic alterations that characterize the effects of resveratrol in the human breast cancer cell lines MCF-7 and MDA-MB-231 using high-throughput liquid chromatography-based mass spectrometry. In both cell lines, growth inhibition was dose dependent and accompanied by substantial metabolic changes. For all 21 amino acids analyzed levels increased more than 100-fold at a resveratrol dose of 100?μM with far lower concentrations in MDA-MB-231 compared to MCF-7 cells. Among the biogenic amines and modified amino acids (n?=?16) resveratrol increased the synthesis of serotonin, kynurenine, and spermindine in both cell lines up to 61-fold indicating that resveratrol strongly interacts with cellular biogenic amine metabolism. Among the eicosanoids and oxidized polyunsaturated fatty acids (n?=?17) a pronounced increase in arachidonic acid and its metabolite 12S-HETE was observed in MDA-MB-231 and to a lesser extent in MCF-7 cells, indicating release from cell membrane phospholipids upon activation of phospholipase A? and subsequent metabolism by 12-lipoxygenase. In conclusion, metabolomic analysis elucidated several small molecules as markers for the response of breast cancer cells to resveratrol.  相似文献   

3.
BackgroundPrevious studies showed that suppression of pyruvate carboxylase (PC) expression in highly invasive breast cancer cell line, MDA-MB-231 inhibits cell growth as a consequence of the impaired cellular biosynthesis. However, the precise cellular mechanism underlying this growth restriction is unknown.MethodsWe generated the PC knockdown (PCKD) MDA-MB-231 cells and assessed their phenotypic changes by fluorescence microscopy, proliferation, apoptotic, cell cycle assays and proteomics.ResultsPC knockdown MDA-MB-231 cells had a low percentage of cell viability in association with accumulation of abnormal cells with large or multi-nuclei. Flow cytometric analysis of annexin V-7-AAD positive cells showed that depletion of PC expression triggers apoptosis with the highest rate at day 4. The increased rate of apoptosis is consistent with increased cleavage of procaspase 3 and poly (ADP-Ribose) polymerase. Cell cycle analysis showed that the apoptotic cell death was associated with G2/M arrest, in parallel with marked reduction of cyclin B levels. Proteomic analysis of PCKD cells identified 9 proteins whose expression changes were correlated with the degree of apoptosis and G2/M cell cycle arrest in the PCKD cells. STITCH analysis indicated 3 of 9 candidate proteins, CCT3, CABIN1 and HECTD3, that form interactions with apoptotic and cell cycle signaling networks linking to PC via MgATP.ConclusionsSuppression of PC in MDA-MB-231 cells induces G2/M arrest, leading to apoptosis. Proteomic analysis supports the potential involvement of PC expression in the aberrant cell cycle and apoptosis, and identifies candidate proteins responsible for the PC-mediated cell cycle arrest and apoptosis in breast cancer cells.General significanceOur results highlight the possibility of the use of PC as an anti-cancer drug target.  相似文献   

4.
Molecular Biology Reports - Centaurea bruguierana, of the Asteraceae family, has a long history of use in traditional medicines for the treatment of various ailments. However, the anticancer...  相似文献   

5.
目的:探讨SmacN7对乳腺癌细胞MDA-MB-157凋亡的作用及机制。方法:将0-20μmol/L的Smac N7应用于乳腺癌细胞MDA-MB-157,用MTS法检测细胞增殖活性,流式细胞仪检测细胞凋亡、细胞周期,hoechst33342染色观察细胞核型变化,JC-1染色检测线粒体膜电位,LDH释放实验检测药物细胞毒性,qPCR检测各基因转录水平,并通过抑瘤实验证实该药抑制乳腺癌增殖的作用。结果:应用Smac N7后,乳腺癌细胞MDA-MB-157增殖抑制率和细胞凋亡率均增加(P<0.01),核型发生显著变化,细胞线粒体膜电位降低,LDH释放量增加,并上调TRAIL、DR4、DR5、p53、PARP-1、Bax、Bid、BAK、caspase-3、caspase-8、caspase-9基因的转录水平(P<0.01),下调Ras、PI3K、AKT、mTOR、Bcl2、Bcl-xL、MCL-1、Survivin、cIAP-1、cIAP-2基因的转录水平(P <0.01)。结论:SmacN7可通过TRAIL介导的死亡受体途径和线粒体介导的内源性凋亡途径诱导乳腺癌细胞MDA...  相似文献   

6.
The major drawback with cancer therapy is the development of resistant cells within tumors due to their heterogeneous nature and due to inadequate drug delivery during chemotherapy. Therefore, the propagation of injury ("bystander effect" (BE)) from directly damaged cells to other cells may have great implications in cancer chemotherapy. The general advantage of the bystander cell killing phenomenon is the large therapeutic index that can be achieved. Experiments suggest that this phenomenon is detected in radiation therapy as well as in gene therapy in conjunction with chemotherapy. In the present study, we developed an original in vitro model dedicated to the exploration of bystander cytotoxicity induced during breast carcinoma chemotherapy. In brief, we investigated this perpetuation of injury on untreated bystander MCF-7 breast cancer cells which were coplated with 5-fluorouracil (5-FU)-treated MDA-MB-231 breast cancer cells. To achieve this goal, a specific in vitro coculture model which involved mixing of aggressive MDA-MB-231 breast cancer cells with enhanced green fluorescent protein (EGFP) expressing stable clone of non-metastatic MCF-7 breast cancer cells (MCF-EGFP), was used. A bystander killing effect was observed in MCF-EGFP cells cocultured with MDA-MB-231 cells pretreated with 5-FU. The striking decrease in MCF-EGFP cells, as detected by assaying for total GFP intensity, is mediated by activation of Fas/FasL system. The implication of Fas in MCF-EGFP cell death was confirmed by using antagonistic anti-FasL antibody that reverses bystander cell death by blocking FasL on MDA-MB-231 cells. In addition, inhibition of CD95/Fas receptor on the cell surface of MCF-EGFP cells by treatment with Pifithrin-alpha, a p53 specific transactivation inhibitor, partially abrogated the sensitivity of bystander MCF-EGFP cells. Our data, therefore, demonstrates that the Fas/FasL system could be considered as a new determinant for chemotherapy-induced bystander cell death in breast cancers.  相似文献   

7.
肿瘤坏死因子相关凋亡诱导配体(tumor necrosis factor-related apoptosis-inducing ligand, TRAIL)对癌细胞有独特的细胞毒性作用,而对正常细胞没有影响. 但乳腺癌细胞耐受TRAIL诱导凋亡.本研究探索磷脂酰肌醇-3激酶(phosphatidylinositol 3-kinase,PI3K)信号通路对人乳腺癌MCF-7细胞耐受TRAIL的影响. 采用MTT法、显微照相以及DAPI染色观察TRAIL对MCF-7细胞生长的抑制作用以及诱导细胞凋亡状况;流式细胞分析细胞凋亡的情况;激光共聚焦显微镜观察多聚ADP核糖多聚酶-1(poly(ADP-ribose) polymerase -1,PARP-1)的迁移和定位;Western印迹分析死亡受体、caspase-3/8、磷酸化的AKT[pAKT(Ser473)]、Src和PARP-1等蛋白质表达. 结果显示,小剂量TRAIL(< 80 nmol/L)和Ly294002(< 40μmol/L)对MCF-7细胞生长没有显著的抑制作用,但是大剂量TRAIL(160 nmol/L)和Ly294002(80 μmol/L)则能抑制MCF-7细胞生长;低剂量Ly294002协同TRAIL抑制MCF-7细胞生长,并诱导细胞凋亡;Ly294002和TRAIL共同作用能促进PARP-1从胞浆进入细胞核;蛋白质表达分析显示,MCF-7细胞均表达死亡受体DR4、DR5、诱骗受体DcR1和DcR2、以及caspase-8,但是不表达caspase-3;Ly294002和TRAIL共同作用也能抑制pAKT(Ser473)和Src的表达,并且导致PARP-1断裂. 本研究结果提示,抑制PI3K信号可增加MCF-7细胞对TRAIL诱导的敏感性;MCF-7细胞通过PI3K/AKT途径促进Src的表达耐受TRAIL的细胞毒性作用Ly294002联合TRAIL是一种新的药物组合方式治疗乳腺癌.  相似文献   

8.
The effects of 2-chloro-2'-deoxyadenosine, 9-beta-D-arabinofuranosyl-2-fluoroadenine, and 5-aza-2'-deoxycytidine on promoter methylation of the selected tumor suppressor genes (i.e., ERalpha, BRCA1, RARbeta2, E-cadherin, PTEN, and APC) were estimated using methylation-sensitive restriction analysis. The studies were carried out in hormone-responsive, low-invasive cell line MCF-7 and hormone-insensitive, highly invasive cell line MDA-MB-231. The results demonstrate an implication of the tested adenosine analogues and 5-aza-dCyd in regulation of DNA methylation process. Moreover, the effects of nucleoside analogues on PTEN promoter methylation suggest distinct mechanism of regulation of the epigenetic DNA modification in low-invasive compared to highly invasive breast cancer cells.  相似文献   

9.

Objectives

Phosphodiesterase 9 (PDE9) is a major isoform of phosphodiesterase hydrolysing cGMP and plays a key role in proliferation of cells, their differentiation and apoptosis, via intracellular cGMP signalling. The study described here was designed to investigate expression, activity and apoptotic effect of PDE9 on human breast cancer cell lines, MCF‐7 and MDA‐MB‐468.

Materials and methods

Activity and expression of PDE9 were examined using colorimetric cyclic nucleotide phosphodiesterase assay and real‐time RT‐PCR methods respectively; cGMP concentration was also measured. MTT viability test, annexin V‐FITC staining, Hoechst 33258 staining and caspase3 activity assay were used to detect apoptosis.

Results

Treatment of both cell lines with BAY 73‐6691 lead to reduction in PDE9 mRNA expression, PDE9 cGMP‐hydrolytic activity and elevation of the intracellular cGMP response. BAY 73‐6691 significantly reduced cell proliferation in a dose‐ and time‐dependent manner and caused marked increase in apoptosis through caspase3 activation.

Conclusion

Our results revealed that BAY 73‐6691 induced apoptosis in these breast cancer cell lines through the cGMP pathway. These data suggest that BAY 73‐6691 could be utilized as an agent in treatment of breast cancer.  相似文献   

10.
11.
12.
Triple-negative breast cancer (TNBC) is the most outrageous subtype of breast cancer. Emphasizing the urge of new approach in cancer therapy, combinational drug therapy may be proven as an effective strategy. In our previous study, we reported that coralyne (COR) with paclitaxel (PTX) efficiently decreases the proliferation of MDA-MB-231 compared with MCF-7 cell line. Thus, we studied the effect of COR and PTX in combination on apoptosis of MDA-MB-231 cell line. In silico results demonstrated that COR intercalates DNA at a minor groove. In vitro approaches revealed that in combination (COR and PTX) increases the efficacy of apoptosis in MDA-MB-231 cell line by a significant increase in G1/S phase arrest, DNA fragmentation, and change in mitochondria membrane potential. The expression of ATM and ATR a serine/threonine-protein kinase, ataxia telangiectasia and Rad3-related protein were depleted with an increase in time from 24 to 48 hours in concurrent with increased levels of γH2AX indicating that DNA damage routes cells to enter apoptosis. This was confirmed by high levels of caspase-3 and cytochrome c. Also, the decrease in the expression levels of matrix metalloproteinase-9 confirmed the antimetastatic efficacy of COR + PTX. The present study indicates that the synergistic effect of COR and PTX can enhance apoptosis in MDA-MB-231 cell line and may be proven as a potential anticancer therapy against TNBC.  相似文献   

13.
A novel library of coumarin tagged 1,3,4 oxadiazole conjugates was synthesized and evaluated for their antiproliferative activities against MDA-MB-231 and MCF-7 breast cancer cell lines. The evaluation studies revealed that compound 9d was the most potent molecule with an IC50 value of <5?µM against the MCF-7 cell line. Interestingly, compounds 10b and 11a showed a similar trend with lower inhibitory concentration (IC50?=?7.07?µM), in Estrogen Negative (ER?) cells than Estrogen Positive (ER+) cells. Structure–activity relationship (SAR) studies revealed that conjugates bearing benzyl moieties (9b, 9c and 9d) had superior activities compared to their alkyl analogues. The most potent compound 9d showed ~1.4?times more potent activity than tamoxifen against MCF-7 cell line; while the introduction of sulfone unit in compounds 11a, 11b and 11c resulted in significant cytotoxicity against both MCF-7 and MDA-MB-231 cell lines. These results were further supported by docking studies, which revealed that the stronger binding affinity of the synthesized conjugates is due to the presence of sulfone unit attached to the substituted benzyl moiety in their pharmacophores.  相似文献   

14.
Histone demethylase KDM7A regulates neuronal differentiation and development in mammals. In this study, we found that KDM7A was also required for breast cancer stem cells (BCSCs) maintenance. Silencing KDM7A significantly reduced the BCSCs population and mamosphere formation in vitro, and inhibited breast tumor growth in vivo. Restoring KDM7A expression rescued the defect in stem cell maintenance. Our mechanism analysis suggested that KDM7A upregulated the stemness-associated factors KLF4 and c-MYC for BCSCs maintenance. In addition, KDM7A knockdown promoted apoptosis through decreasing BCL2 expression and BAD phosphorylation in breast cancer (BrCa). Furthermore, restoring KDM7A and BCL2 expression rescued apoptosis inhibition in breast cancer, suggesting that KDM7A inhibited apoptosis by upregulating the BCL2 level in breast cancer. In conclusion, KDM7A promotes cancer stem cell maintenance and apoptosis inhibition in breast cancer.  相似文献   

15.
Epidermal growth factor plays a major role in breast cancer cell proliferation, survival, and metastasis. Quercetin, a bioactive flavonoid, is shown to exhibit anticarcinogenic effects against various cancers including breast cancer. Hence, the present study was designed to evaluate the effects of gold nanoparticles–conjugated quercetin (AuNPs‐Qu‐5) in MCF‐7 and MDA‐MB‐231 breast cancer cell lines. Borohydride reduced AuNPs were synthesized and conjugated with quercetin to yield AuNPs‐Qu‐5. Both were thoroughly characterized by several physicochemical techniques, and their cytotoxic effects were assessed by MTT assay. Apoptotic studies such as DAPI, AO/EtBr dual staining, and annexin V‐FITC staining were performed. AuNPs and AuNPs‐Qu‐5 were spherical with crystalline nature, and the size of particles range from 3.0 to 4.5 nm. AuNPs‐Qu‐5 exhibited lower IC50 value compared to free Qu. There was a considerable increase in apoptotic population with increased nuclear condensation seen upon treatment with AuNPs‐Qu‐5. To delineate the molecular mechanism behind its apoptotic role, we analysed the proteins involved in apoptosis and epidermal growth factor receptor (EGFR)–mediated PI3K/Akt/GSK‐3β signalling by immunoblotting and immunocytochemistry. The pro‐apoptotic proteins (Bax, Caspase‐3) were found to be up regulated and anti‐apoptotic protein (Bcl‐2) was down regulated on treatment with AuNPs‐Qu‐5. Additionally, AuNPs‐Qu‐5 treatment inhibited the EGFR and its downstream signalling molecules PI3K/Akt/mTOR/GSK‐3β. In conclusion, administration of AuNPs‐Qu‐5 in breast cancer cell lines curtails cell proliferation through induction of apoptosis and also suppresses EGFR signalling. AuNPs‐Qu‐5 is more potent than free quercetin in causing cancer cell death, and hence, this could be a potential drug delivery system in breast cancer therapy.  相似文献   

16.
MCF-7/VD(R): a new vitamin D resistant cell line   总被引:4,自引:0,他引:4  
Several in vitro and in vivo experiments have demonstrated potent cell regulatory effects of vitamin D compounds in cancer cells. Moreover, a promising phase I study with the vitamin D analogue Seocalcitol (EB 1089) in patients with advanced breast and colon cancer has already been carried out and more clinical trials evaluating the clinical effectiveness of EB 1089 in other cancer types are in progress (M?rk Hansen et al. [2000a]). However, only little is known about the mechanisms underlying the actions of vitamin D or about the possible development of drug resistance in the patients. Therefore, in an attempt to gain more insight into these aspects, we have developed the MCF-7/VD(R) cell line, a stable subclone of the human MCF-7 breast cancer cell line, which is resistant to the growth inhibitory and apoptosis inducing effects of 1alpha,25(OH)(2)D(3). Despite this characteristic, receptor studies on the VDR have clearly demonstrated that the MCF-7/VD(R) cells contain fully functional VDRs, although in a lower number than seen with the parental MCF-7 cells. The regulation of the 24-hydroxylase enzyme appeared to be intact in the MCF-7/VD(R) cells and no differences with regard to growth rate and morphological appearance between the MCF-7/VD(R) cells and the parental MCF-7 cells were observed. Interestingly, however, the sensitivity of the MCF-7/VD(R) cells to the pure anti-estrogen ICI 182,780 was found to be increased. The MCF-7/VD(R) cell line shows characteristics different from those of previously described vitamin D resistant breast cancer cell lines but also some similarities. Together such vitamin D resistant cell lines therefore serve as a useful tool for studying the exact mechanism of action of vitamin D and the development of vitamin D resistance.  相似文献   

17.
18.
ABSTRACT

Geranium thunbergii is a traditional East Asian medicine for stomach diseases including dysentery and stomach ulcers in East Asia and has been reported to possess biological activity. The benefits of G. thunbergii in gastric cancer are unknown. In this study, we demonstrate that G. thunbergii extract suppresses proliferation and induces death and G1/S cell cycle arrest of gastric cancer cells. Proliferation was significantly inhibited in a time- and dose-dependent manner. Cell cycle arrest was associated with significant decreases in CDK4/cyclinD1 complex and CDK2/cyclinE complex genes expression. In addition, the protein expression of caspase-3 was decreased and that of activated poly (ADP-ribose) polymerase (PARP) was increased, which indicated apoptosis. The expressions of the Bax and Bcl-2, which are apoptosis related proteins, were upregulated and down-regulated, respectively. The results indicate that G. thunbergii extract can inhibit proliferation and induce both G/S cell cycle arrest and apoptosis of gastric cancer cells. Also, the induction of apoptosis involved the intrinsic pathways of the cells. Take the results, we suggest that G. thunbergii extract has anti-gastric cancer activity and may be a potential therapeutic candidate for gastric cancer.  相似文献   

19.
Verrucarin A (VA), a protein synthesis inhibitor, derived from the pathogen fungus Myrothecium verrucaria, inhibits growth of leukemia cell lines and activates caspases and apoptosis and inflammatory signaling in macrophages. We have investigated VA-induced growth inhibition in breast cancer cells MDA-MB-231 and T47D and, particularly, the mechanism of VA-induced apoptosis. VA treatment brought about apoptotic cell death in a dose- and time-dependent manner which was associated with chromatin condensation, cell shrinkage, nuclear fragmentation and intracellular ROS production. Mitochondrial membrane depolarization, activation of caspase-3, down-regulation of Bcl-2 expression and up-regulation of Bax and p53 expression were observed. VA thus affects the viability of both the breast cancer cells by triggering ROS-mediated intrinsic mechanism of apoptosis.  相似文献   

20.
Molecule interacting with CasL 1 (MICAL1) is a multidomain flavoprotein mono‐oxygenase that strongly involves in cytoskeleton dynamics and cell oxidoreduction metabolism. Recently, results from our laboratory have shown that MICAL1 modulates reactive oxygen species (ROS) production, and the latter then activates phosphatidyl inositol 3‐kinase (PI3K)/protein kinase B (Akt) signalling pathway which regulates breast cancer cell invasion. Herein, we performed this study to assess the involvement of MICAL1 in breast cancer cell proliferation and to explore the potential molecular mechanism. We noticed that depletion of MICAL1 markedly reduced cell proliferation in breast cancer cell line MCF‐7 and T47D. This effect of MICAL1 on proliferation was independent of wnt/β‐catenin and NF‐κB pathways. Interestingly, depletion of MICAL1 significantly inhibited ROS production, decreased p‐ERK expression and unfavourable for proliferative phenotype of breast cancer cells. Likewise, MICAL1 overexpression increased p‐ERK level as well as p‐ERK nucleus translocation. Moreover, we investigated the effect of MICAL1 on cell cycle‐related proteins. MICAL1 positively regulated CDK4 and cyclin D expression, but not CDK2, CDK6, cyclin A and cyclin E. In addition, more expression of CDK4 and cyclin D by MICAL1 overexpression was blocked by PI3K/Akt inhibitor LY294002. LY294002 treatment also attenuated the increase in the p‐ERK level in MICAL1‐overexpressed breast cancer cells. Together, our results suggest that MICAL1 exhibits its effect on proliferation via maintaining cyclin D expression through ROS‐sensitive PI3K/Akt/ERK signalling in breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号