首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a cancer-related long noncoding RNA, functionality of GASL1 has only been characterized in liver cancer. Our study aimed to investigate the possible involvement of GASL1 in postoperative recurrence of gastric adenocarcinoma. A total of 112 gastric adenocarcinoma patients with a tumor located in the distal third who received gastrectomy distal resection in The Second Hospital of Dalian Medical University from January 2012 to January 2015 were included in this study. Patients were followed up for 3 years. Another 56 healthy people were also included to serve as a control group. Blood was extracted from each subject on the day of discharge, on the day of diagnosis of recurrence or at the end of follow-up. The GASL1 expression vector was transfected into gastric adenocarcinoma cell lines. It was observed that plasma levels of GASL1 were significantly lower, while plasma levels of transforming growth factor-β1 (TGF-β1) were significantly higher in patients than in healthy controls on the day of discharge. Patients with distant recurrence showed significantly lower plasma levels of GASL1 and significantly higher plasma levels of TGF-β1 compared with patients with local recurrence and patients without recurrence. During follow-up, plasma levels of GASL1 and TGF-β1 were negatively correlated in patients with distant recurrence but not in other groups of patients. GASL1 overexpression inhibited, while TGF-β1 treatment promoted cell migration and invasion. Overexpression of GASL1 led to downregulated and GASL1 knockdown led to upregulated TGF-β1. However, TGF-β1 showed no significant effects on GASL1 expression. We conclude that GASL1 may participate in the distant recurrence of gastric adenocarcinoma through the interactions with TGF-β1.  相似文献   

2.
Long noncoding RNAs (lncRNA) snaR is a characterized oncogenic lncRNA in triple negative breast cancer and ovarian cancer, while its role in other human diseases is unknown. In the present study, we found that plasma levels of snaR were upregulated in patients with laryngeal squamous cell carcinoma (LSCC) than in healthy controls. Plasma levels of snaR increased with increase in AJCC stages. Follow-up study showed that high plasma levels of snaR were correlated with poor overall survival. Plasma levels of snaR were positively correlated with transforming growth factor beta (TGF-β1) in patients with LSCC but not in healthy controls. Overexpression of snaR resulted in upregulation of TGF-β1 in cells of human LSCC cell lines, while exogenous TGF-β1 treatment showed no significant effect on snaR expression. snaR overexpression and exogenous TGF-β1 treatment promoted LSCC cell proliferation, migration, and invasion. In addition, TGF-β inhibitor partially reduced the enhancing effects of snaR overexpression on LSCC cell proliferation, migration, and invasion. Therefore, overexpression of lncRNA snaR is correlated with progression and predicts poor survival of LSCC and the mechanism of its actions is likely related to TGF-β1.  相似文献   

3.
PAPAS is a recently identified long noncoding RNA (lncRNA) with inhibitory effects on ribosomal RNA synthesis. We studied the role of PAPAS in oral squamous cell carcinoma (OSCC). In the present study we showed that plasma PAPAS and transforming growth factor β1 (TGF-β1) were both upregulated in patients with OSCC, and were positively correlated only in patients with OSCC. Plasma levels of PAPAS were not significantly affected by AJCC stages and upregulation of PAPAS distinguished stage I OSCC patients from healthy controls. High plasma levels of PAPAS were followed by low overall survival rate. PAPAS overexpression led to upregulation of TGF-β1 in OSCC cells, while TGF-β1 treatment failed to significantly affect PAPAS. PAPAS overexpression and exogenous TGF-β1 treatment led to promoted invasion and migration of OSCC cells. In addition, TGF-β inhibitor attenuated the effects of PAPAS overexpression. Therefore, lncRNA PAPAS may promote OSCC by upregulating TGF-β1.  相似文献   

4.
Transforming growth factor-β (TGF-β) signaling plays pivotal roles in the pathogenesis of osteoarthritis, while TGF-β signaling in certain diseases models is regulated by the long noncoding RNA (lncRNA) antidifferentiation noncoding RNA (ANCR). Therefore, ANCR may also participate in osteoarthritis. In this study, the expression of ANCR and TGF-β1 in the plasma of osteoarthritis patients and healthy controls was detected by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The diagnostic value of ANCR for osteoarthritis was evaluated by receiver operating characteristic receiver operating characteristic (ROC) curve analysis. The correlation between the plasma levels of ANCR and TGF-β1 was analyzed by the Pearson correlation coefficient. The ANCR expression vector was transfected into cells of the human chondrocyte cell line CHON-001 (ATCC CRL-2846), and the effect on TGF-β1 expression and cell proliferation was detected by Western blot and cell counting kit-8 assay, respectively. We observed that the plasma levels of ANCR were significantly lower, while the plasma levels of TGF-β1 were significantly higher in osteoarthritis patients than those in healthy controls. Downregulation of ANCR effectively distinguished osteoarthritis patients from healthy controls. ANCR and TGF-β1 expression was negatively correlated in osteoarthritis patients but not in healthy controls. ANCR overexpression promoted the proliferation of chondrocytes and inhibited TGF-β1 expression. We concluded that ANCR might participate in osteoarthritis by downregulating TGF-β1 and promote the proliferation of chondrocytes.  相似文献   

5.
LASP2 (LIM and SH3 protein 2), a member of the LIM-protein subfamily of the nebulin group, was first identified as a splice variant of the nebulin gene. In the past, investigators mainly focused on the impact of LASP2 on cardiac diseases because of its identification in the myocardium. Recently, several studies have reported that LASP2 is associated with the progression of various cancers. However, there have been no investigations on the expression and function of LASP2 in pancreatic cancer (PC). In this study, we performed the quantitative real-time polymerase chain reaction and Western blot analysis to detect the expression of LASP2 in PC tissues and cell lines. PC cells were transfected with LASP2 overexpression plasmid or the negative control in the presence or absence of tumor growth factor-β (TGF-β). The transwell assays were used to measure the effects of LASP2 on PC cell migration and invasion. The protein expression of epithelial-mesenchymal transition (EMT) markers was detected using Western blot assay. Our results demonstrated that LASP2 was downregulated in PC tissues and cell lines. In addition, upregulation of LASP2 inhibited the PC cell migration and invasion. We also found that LASP2 upregulation reversed TGF-β-induced EMT in PC cells. Taken together, we provided novel evidence supporting the tumor-suppressor role of LASP2 in PC and suggested it as a potential therapeutic target in PC treatment.  相似文献   

6.
The role of EGF and TGF-β1 in thyroid cancer is still not clearly defined. TGF-β1 inhibited the cellular growth and migration of follicular (FTC-133) and papillary (B-CPAP) thyroid carcinoma cell lines. Co-treatments of TGF-β1 and EGF inhibited proliferation in both cell lines, but displayed opposite effect on their migratory capability, leading to inhibition in B-CPAP and promotion in FTC-133 cells, by a MAPK-dependent mechanism. TGF-β1, TβRII and EGFR expressions were evaluated in benign and malignant thyroid tumors. Both positivity (51.7% and 60.0% and 80.0% in FA and PTC and FTC) and overexpression (60.0%, 77.7% and 75.0% in FA, PTC and FTC) of EGFR mRNA correlates with the aggressive tumor behavior. The moderate overexpression of TGF-β1 and TβRII mRNA in PTC tissues (61.5% and 62.5%, respectively), counteracted their high overexpression in FTC tissues (100% and 100%, respectively), while EGFR overexpression was similar in both carcinomas. Papillary carcinomas were positive to E-cadherin expression, while the follicular carcinomas lose E-cadherin staining. Our findings of TGF-β1/TβRII and EGFR overexpressions together with a loss of E-cadherin observed in human follicular thyroid carcinomas, and of increased migration ability MAPK-dependent after EGF/TGF-β1 treatments in the follicular thyroid carcinoma cell line, reinforced the hypothesis of a cross-talk between EGF and TGF-β1 systems in follicular thyroid carcinomas phenotype.  相似文献   

7.
Long noncoding RNA (lncRNA) HAND2-AS1 is a well-characterized tumor suppressor in several types of malignancies, while its role in esophagus squamous cell carcinoma (ESCC) is unknown. In this study, we found that lncRNA HAND2-AS1 was downregulated, while microRNA-21 ( miRNA-21) was upregulated in tumor tissues than in adjacent healthy tissues of ESCC patients. Expression levels of lncRNA HAND2-AS1 and miRNA-21 were significantly and inversely correlated in tumor tissues but not in healthy tissues. Plasma levels of lncRNA HAND2-AS1 were lower in ESCC patients than in healthy controls, and downregulation of plasma lncRNA HAND2-AS1 distinguished early stage ESCC patients from healthy controls. lncRNA HAND2-AS1 overexpression resulted in downregulation of miRNA-21 in cells of ESCC cell lines and inhibited cell proliferation, migration, and invasion. miRNA-21 overexpression failed to affect lncRNA HAND2-AS1 expression but significantly attenuated the inhibitory effect of lncRNA HAND2-AS1 overexpression on cancer cell proliferation, migration, and invasion. Therefore, lncRNA HAND2-AS1 may inhibit cancer cell proliferation, migration, and invasion in ESCC by regulating miRNA-21.  相似文献   

8.
Long noncoding RNAs (lncRNAs) CASC11 is an oncogenic lncRNA in gastric cancer and colorectal cancer. Our study aimed to investigate the role of lncRNA CASC11 in bladder cancer. In this study we showed that plasma lncRNA CASC11 was upregulated, while plasma miRNA-150 was downregulated in patients with early-stage bladder cancer than in healthy controls. Altered expression of plasma lncRNA CASC11 and miRNA-150 separated patients with bladder cancer from healthy controls. lncRNA CASC11 expression was inversely correlated with miRNA-150 expression in patients with bladder cance but not in healthy controls. Overexpression of lncRNA CASC11 mediated the inhibition of miRNA-150 expression in cancer cells, while miRNA-150 overexpression did not significantly alter lncRNA CASC11 expression. lncRNA CASC11 overexpression promoted, while miRNA-150 overexpression inhibited cancer cell proliferation. miRNA-150 also attenuated the enhancing effects of lncRNA CASC11 overexpression on cancer cell proliferation. However, overexpression of lncRNA CASC11 showed no significant effects on cancer cell migration and invasion. Therefore, lncRNA CASC11 may promote cancer cell proliferation in bladder cancer, and the actions of lncRNA CASC11 are likely through miRNA-150.  相似文献   

9.
Transforming growth factor β (TGF-β)-stimulated epithelial-mesenchymal transition (EMT) is an important developmental process that has also been implicated in increased cell invasion and metastatic potential of cancer cells. Expression of the focal adhesion protein Hic-5 has been shown to be up-regulated in epithelial cells in response to TGF-β. Herein, we demonstrate that TGF-β-induced Hic-5 up-regulation or ectopic expression of Hic-5 in normal MCF10A cells promoted increased extracellular matrix degradation and invasion through the formation of invadopodia. Hic-5 was tyrosine phosphorylated in an Src-dependent manner after TGF-β stimulation, and inhibition of Src activity or overexpression of a Y38/60F nonphosphorylatable mutant of Hic-5 inhibited matrix degradation and invasion. RhoC, but not RhoA, was also required for TGF-β- and Hic-5-induced matrix degradation. Hic-5 also induced matrix degradation, cell migration, and invasion in the absence of TGF-β via Rac1 regulation of p38 MAPK. These data identify Hic-5 as a critical mediator of TGF-β-stimulated invadopodia formation, cell migration, and invasion.  相似文献   

10.
The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF-β1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF-β1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF-β1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF-β1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF-β1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF-β1-induced EMT.  相似文献   

11.
Transforming growth factor-β (TGF-β) is known to promote tumor migration and invasion. Bone morphogenetic proteins (BMPs) are members of the TGF-β family expressed in a variety of human carcinoma cell lines. The role of bone morphogenetic protein 9 (BMP9), the most powerful osteogenic factor, in osteosarcoma (OS) progression has not been fully clarified. The expression of BMP9 and its receptors in OS cell lines was analyzed by RT-PCR. We found that BMP9 and its receptors were expressed in OS cell lines. We further investigated the influence of BMP9 on the biological behaviors of OS cells. BMP9 overexpression in the OS cell lines 143B and MG63 inhibited in vitro cell migration and invasion. We further investigated the expression of a panel of cancer-related genes and found that BMP9 overexpression increased the phosphorylation of Smad1/5/8 proteins, increased the expression of ID1, and reduced the expression and activity of matrix metalloproteinase 9 (MMP9) in OS cells. BMP9 silencing induced the opposite effects. We also found that BMP9 may not affect the chemokine (C-X-C motif) ligand 12 (CXCL12)/C-X-C chemokine receptor type 4 (CXCR4) axis to regulate the invasiveness and metastatic capacity of OS cells. Interestingly, CXCR4 was expressed in both 143B and MG63 cells, while CXCL12 was only detected in MG63 cells. Taken together, we hypothesize that BMP9 inhibits the migration and invasiveness of OS cells through a Smad-dependent pathway by downregulating the expression and activity of MMP9.  相似文献   

12.
The epithelial-mesenchymal transition (EMT) is a key step for cancer cell migration, invasion, and metastasis. Transforming growth factor-β (TGF-β) regulates the EMT and the metastasis suppressor gene, N-myc downstream-regulated gene-1 (NDRG1), could play a role in regulating the TGF-β pathway. NDRG1 expression is markedly increased after chelator-mediated iron depletion via hypoxia-inducible factor 1α-dependent and independent pathways (Le, N. T. and Richardson, D. R. (2004) Blood 104, 2967-2975). Moreover, novel iron chelators show marked and selective anti-tumor activity and are a potential new class of anti-metabolites. Considering this, the current study investigated the relationship between NDRG1 and the EMT to examine if iron chelators can inhibit the EMT via NDRG1 up-regulation. We demonstrated that TGF-β induces the EMT in HT29 and DU145 cells. Further, the chelators, desferrioxamine (DFO) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), inhibited the TGF-β-induced EMT by maintaining E-cadherin and β-catenin, at the cell membrane. We then established stable clones with NDRG1 overexpression and knock-down in HT29 and DU145 cells. These data showed that NDRG1 overexpression maintained membrane E-cadherin and β-catenin and inhibited TGF-β-stimulated cell migration and invasion. Conversely, NDRG1 knock-down caused morphological changes from an epithelial- to fibroblastic-like phenotype and also increased migration and invasion, demonstrating NDRG1 knockdown induced the EMT and enhanced TGF-β effects. We also investigated the mechanisms involved and showed the TGF-β/SMAD and Wnt pathways were implicated in NDRG1 regulation of E-cadherin and β-catenin expression and translocation. This study demonstrates that chelators inhibit the TGF-β-induced EMT via a process consistent with NDRG1 up-regulation and elucidates the mechanism of their activity.  相似文献   

13.
The biological characteristics of bladder cancer include enhanced invasion and migration, which are the main causes of death in patients. Starvation is a typical feature of the bladder cancer microenvironment and can induce autophagy. Autophagy has an important relationship with the invasion and migration of tumors. However, the role of autophagy in the invasion and migration of bladder cancer cells remains unclear. Hence, the aim of the current study was to clarify this role and underlying mechanism. In this study, we found that starvation enhanced the epithelial-mesenchymal transition (EMT)-mediated invasion and migration of T24 and 5637 cells while inducing autophagy. The inhibition of autophagy with chloroquine (CQ) or 3-methyladenine (3MA) decreased EMT-mediated invasion and migration. In addition, the expression of transforming growth factor 1 (TGF-β1) and phosphorylated Smad3 (p-Smad3) increased after starvation. The inhibition of autophagy with CQ or 3MA also decreased the expression of TGF-β1 and p-Smad3. The inhibitor of TGF-β receptor sb431542 also inhibited the invasion, migration, and EMT of T24 and 5637 cells during starvation. Furthermore, recombinant TGF-β1 induced autophagy and inhibition of the TGF-β/Smad signaling pathway with sb431542 suppressed autophagy. In summary, our results suggested that autophagy promotes the invasion and migration of bladder cancer cells by inducing EMT through the TGF-β1/Smad3 signaling pathway. Moreover, autophagy and TGF-β1 can form a positive feedback loop to synergistically promote invasion and migration. Thus, our findings may provide a theoretical basis for the prevention of invasion and migration in bladder cancer.  相似文献   

14.
Epithelial-mesenchymal transition (EMT) has been contributed to increase migration and invasion of cancer cells. However, the correlate of Naa10p and IKKα with EMT in oral squamous cell carcinoma (OSCC) is not yet fully understood. In our present study, we found N-α-acetyltransferase 10 protein (Naa10p) and IκB kinase α (IKKα) were abnormally abundant in oral squamous cell carcinoma (OSCC). Bioinformatic results indicate that the expression of Naa10p and IKKα is correlated with TGF-β1/Smad and EMT-related molecules. The Transwell migration, invasion, qRT-PCR and Western blot assay indicated that Naa10p repressed OSCC cell migration, invasion and EMT, whereas IKKα promoted TGF-β1–mediated OSCC cell migration, invasion and EMT. Mechanistically, Naa10p inhibited IKKα activation of Smad3 through the interaction with IKKα directly in OSCC cells after TGF-β1 stimulation. Notably, knockdown of Naa10p reversed the IKKα-induced change in the migration, invasion and EMT-related molecules in OSCC cells after TGF-β1 stimulation. These findings suggest that Naa10p interacted with IKKα mediates EMT in OSCC cells through TGF-β1/Smad, a novel pathway for preventing OSCC.  相似文献   

15.
16.
Melanoma is one of the most aggressive and life-threatening skin cancers, and in this research, we aimed to explore the functional role of circular RNA VANGL1 (circVANGL1) in melanoma progression. The expression levels of circVANGL1 were observed to be significantly increased in clinical melanoma tissues and cell lines. Moreover, circVANGL1 knockdown suppressed, while circVANGL1 overexpression promoted the proliferation, migration and invasion abilities of melanoma cells. Further investigations confirmed the direct binding relation between circVANGL1 and miR-150-5p in melanoma, and restoration of miR-150-5p blocked the effects of circVANGL1 overexpression in melanoma cells. We further found that circVANGL1 was up-regulated by TGF-β treatment, and the enhanced EMT of TGF-β-treated melanoma cells was blocked by circVANGL1 knockdown. In conclusion, these results indicated that circVANGL1 might serve as a promising therapeutic target for melanoma.  相似文献   

17.
Wang X  Sun W  Zhang C  Ji G  Ge Y  Xu Y  Zhao Y 《Gene》2011,485(2):160-166
Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine that regulates cell growth, differentiation, migration, apoptosis and extracellular matrix remodeling. TGF-β1 transduces signals from the cell membrane to the cell nucleus through serine/threonine kinase receptors and their downstream effectors, Smad molecules. Although many studies have been focused on TGF-β1-Smad signaling pathway, the role of TGF-β1/Smad in tongue squamous cell carcinoma is not fully understood. In the present study, we used a series of cell function assays to examine the role of TGF-β-Smad4 signaling in tongue squamous cell carcinoma. We observed the effects of TGF-β1 on the growth and metastatic potential of the tongue squamous cell carcinoma cell line Ts, which expresses lower level of Smad4 protein. We found that Smad4 could decrease TGF-β1-induced cell proliferation, and that Smad4 overexpression promoted Ts cell apoptosis. In Ts vector control cells, TGF-β1 increased the expression of TβRII, as well as MMP-2, and enhanced cell invasion through the basement membrane, and then induced cell metastasis. However in Ts cells stably expressing Smad4, Smad4 mediated TGF-β1-induced p21 expression promoted cell apoptosis and inhibited cell proliferation, delayed MMP-2 expression, and decreased cell metastasis. Therefore, TGF-β1 plays distinct roles in the Smad4-dependent and -independent signaling pathways.  相似文献   

18.
19.
20.
Transforming growth factor-β1 (TGF-β1) potently induces the epithelial-mesenchymal transition (EMT) during tumoral progression. Although Sky-interacting protein (SKIP) regulates TGF-β1-induced Smad activation, its role in the induction of cell malignance remains uncertain. We found that TGF-β1 increases SKIP expression in PDV cells. In cells stably transfected with SKIP antisense, AS-S, Smad3 activation decreased, along with an inhibition of TGF-β1-induced EMT, and the cells were sensitized to the TGF-β1-dependent inhibition of proliferation. Also, AS-S cells showed a weaker migration and invasion response. Moreover, TGF-β1-induced urokinase-type plasminogen activator expression was inhibited, concomitantly with a TGF-β1-independent increment of the plasminogen-activator inhibitor-1 expression. Thus, these results suggest that SKIP is required for EMT and invasiveness induced by TGF-β1 in transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号