首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
目的:探讨mi R-506和PI3K/AKT信号通路在自发性高血压大鼠心脏重构中的作用。方法:将12只雄性自发性高血压大鼠(Spontaneous Hypertension Rat, SHR)随机分为2组,每组6只。分别为SHR模型组和治疗组(卡托普利,30 mg·kg~(-1)),6只健康WKY大鼠作为空白对照组。SHR模型组和空白对照组灌胃等体积生理盐水,连续给药8周,采用尾动脉测压法测定给药前后各组大鼠血压,采用qRT-PCR法检测各组大鼠心肌miR-506表达量,并检测大鼠心肌组织中SOD和GPx mRNA表达水平,免疫印迹检测大鼠心肌中p-PI3K和p-AKT的蛋白表达量。结果:SHR模型组血压为(184.79±3.35)mmHg,与空白对照组比较显著升高(P0.05),治疗组血压为(133.57±1.43)mm Hg,与SHR模型组相比均显著降低(P0.05)。SHR模型组大鼠心肌中mi R-506、SOD、GPx的RNA相对表达量分别为(0.36±0.05)、(0.27±0.04)和(0.32±0.02),与空白对照组比较显著降低(P0.05),而p-PI3K、p-AKT蛋白水平显著降低(P0.05),与SHR模型组比较,治疗组大鼠心肌中mi R-506以及SOD、GPx的RNA水平显著升高(P0.05),p-PI3K、p-AKT蛋白水平显著升高(P0.05)。结论:在卡托普利治疗高血压的过程中,mi R-506可能通过抑制PI3K/AKT信号通路提高机体的抗氧化能力促进SHR心脏重塑。  相似文献   

4.
5.
In this study, we characterized rat and mouse aldo-keto reductases (AKR1C16 and AKR1C13, respectively) with 92% sequence identity. The recombinant enzymes oxidized non-steroidal alcohols using NAD+ as the preferred coenzyme, and showed low 3α/17β/20α-hydroxysteroid dehydrogenase (HSD) activities. The substrate specificity differs from that of rat NAD+-dependent 3α-HSD (AKR1C17) that shares 95% sequence identity with AKR1C16. To elucidate the residues determining the substrate specificity of the enzymes, we performed site-directed mutagenesis of Tyr24, Asp128 and Phe129 of AKR1C16 with the corresponding residues (Ser, Tyr and Leu, respectively) of AKR1C17. The double mutation (Asp128/Tyr-Phe129/Leu) had few effects on the substrate specificity, while the Tyr24/Ser mutant showed only 3α-HSD activity, and the triple mutation of the three residues produced an enzyme that had almost the same properties as AKR1C17. The importance of the residue 24 for substrate recognition was verified by the mutagenesis of Ser24/Tyr of AKR1C17 which resulted in a decrease in 3α-HSD activity and appearance of 17β- and 20α-HSD activities. AKR1C16 is also 92% identical with rat NAD+-dependent 17β-HSD (AKR1C24), which possesses Tyr24. The replacement of Asp128, Phe129 and Ser137 of AKR1C16 with the corresponding residues (Glu, Ser and Phe, respectively) of AKR1C24 increased the catalytic efficiency for 17β- and 20α-hydroxysteroids.  相似文献   

6.
为研究臭椿酮(Ailanthone,AIL)诱导人黑色素瘤A375细胞凋亡的作用及作用机制,以人黑色素瘤A375细胞为研究对象,采用MTT法测定AIL对人黑色素瘤A375细胞生长增殖的抑制作用。用倒置相差显微镜观察AIL对A375细胞形态的影响,用荧光倒置显微镜观察Hoechst33258染色后AIL对A375细胞核的影响,用AnnexinV-FITC/PI双染法检测AIL诱导A375细胞凋亡的作用,用分光光度法检测caspase-3和caspase-9的活性,Westernblot检测p-PI3Kβ(Ser1070),PI3Kβ,p-Akt(Ser473)和Akt蛋白表达水平的变化,接着用PI3K抑制剂LY294002进行干预,进一步验证AIL对PI3K/Akt信号通路及细胞凋亡的影响。实验结果表明,AIL能够明显抑制A375细胞增殖,使A375细胞数目变少、附着力和透光性减弱,AIL能够诱导A375细胞凋亡,使其细胞核染色质发生固缩并呈现高亮,且使A375细胞早期及晚期凋亡率均增加,AIL作用后能够使caspase-3和caspase-9活性增加,AIL能够抑制PI3K和Akt蛋白磷酸化,从而使PI3K/Akt信号通路失活。较AIL单独作用,AIL和LY294002共同作用后对PI3K和Akt蛋白磷酸化的抑制作用增强且诱导凋亡作用增加,进一步说明AIL通过失活PI3K/Akt信号通路来诱导A375细胞凋亡。  相似文献   

7.
为了探讨臭椿酮(ailanthone,AIL)对急性骨髓性白血病(acute myelogenous leukemia,AML)细胞恶性生物学行为的影响,用不同浓度(0.2、0.4、0.8、1.6、3.2μmol·L-1)的AIL处理对数生长期的HL-60细胞,将miR-449a mimic质粒、mimic对照质粒、miR-449a inhibitor质粒、inhibitor对照质粒分别转染至未经任何处理的HL-60细胞,并用1.0μmol·L-1浓度的AIL处理细胞24 h。采用CCK-8法检测细胞增殖水平,细胞划痕实验检测细胞迁移水平,Transwell小室法检测细胞侵袭水平,Annexin V-FITC/PI双染法检测细胞凋亡水平,qRT-PCR法检测miR-449a mRNA表达水平,Western blot法检测磷脂酰肌醇3-激酶(PI3K)、磷酸化PI3K(p-PI3K)、蛋白激酶B(AKT)、磷酸化AKT(p-AKT)蛋白表达水平。结果显示,AIL干预后HL-60细胞增殖抑制率、凋亡率升高,细胞迁移率及细胞侵袭数降低(P<...  相似文献   

8.
The hematopoietic cell recognition sites of human fibronectin (FN) are the Arg–Gly–Asp–Ser (RGDS) sequence recognized by widely distributed integrin receptor α5β1 and the type III connecting segment (III CS) containing two cell-binding sites, designated CS1 and CS5, that are recognized by the α4β1 receptor. The C-terminal heparin-binding domain of FN (Hep II) has recently been demonstrated to support adhesion of α4β1-dependent melanoma cells [A. P. Mould and M. J. Humphries (1991)EMBO J.10, 4089–4095]. Previously we demonstrated that this region of FN mediated binding of FN to HL-60 cells (acute promyelocytic leukemia cell line) by direct interaction independently of RGD and CS1 [H. Fujitaet al.,(1995)Exp. Cell Res.217, 484–488]. In this study we have characterized a novel site in the Hep II region for binding to HL-60 cells. α4β1 and α5β1 were expressed on HL-60 cells, while α2β1 and α3β1 were not present, as shown by flow cytometry using monoclonal antibodies specific for the different integrins. Anti-α4β1 (P4C2) and anti-β1 (JB1a) antibodies inhibited binding of a 29-kDa dispase-digestive fragment of FN to HL-60 cells. This fragment contains the C-terminal heparin-binding domain of FN but lacks CS1 and CS5. Only the peptide representing the sequence from Val1866to Arg1880, designated E1, inhibited the binding of the 29-kDa fragment to HL-60 cells. The active region of this peptide was a sequence of Thr–Asp–Ile–Asp–Ala–Pro–Ser (TAI- DAPS), which is homologous to Leu–Asp–Val–Pro–Ser (LDVPS) derived from the active site of CS1. Furthermore, labeled E1 peptide directly bound to HL-60 cells. The anti-α4β1 antibody (P4C2) inhibited this interaction. These results indicate that the site of binding to hematopoietic cells is present in the Hep II region of FN and the definition of the chemical structure of FN clarifies a fundamental mechanism of cell invasion of the extracellular matrix.  相似文献   

9.
10.
Myocardial dysfunction is clinically relevant? repercussion that follows sepsis. Tid 1 protein has been implicated in many biological process. However, the role of Tid 1 in lipopolysaccharide (LPS)-induced cardiomyocyte hypertrophy and apoptosis remains elusive. In the current research endeavor, we have elucidated the role of Tid1-S on LPS-induced cardiac hypertrophy and apoptosis. Interestingly, we found that overexpression of Tid1-S suppressed TLR-4, NFATc3, and BNP protein expression which eventually led to inhibition of LPS-induced cardiac hypertrophy. Moreover, Tid1-S overexpression attenuated cellular apoptosis and activated survival proteins p-PI3K and pser473Akt. Besides this, Tid1-S overexpression enhanced ER-a protein expression. Collectively, our data suggest that Tid1-S plausibly enhance ER-a protein and further activate p-PI3K and p ser473Akt survival protein expression; which thereby led to attenuation of LPS-induced apoptosis in cardiomyoblast cells. Interestingly, our data suggest that Tid1-S is involved in attenuation of cardiomyoblast cells damages induced by LPS.  相似文献   

11.
Simvastatin serves as an effective therapeutic potential in the treatment of dental disease via alternating proliferation of dental pulp stem cells. First, western-blot and real-time quantitative PCR were used to detect the effect of simvastatin or LY294002 on the expression levels of AKT, miR-9 and KLF5, or determine the effect of miR-9. Simvastatin, KLF5 and AKT significantly enhanced the proliferation of pulp stem cells, whilst this effect induced by simvastatin was suppressed by LY294002, AKT siRNA, KLF5 siRNA and miR-9, and simvastatin dose-dependently upregulated the expression of PI3K. Furthermore, simvastatin upregulated PI3K and p-AKT expression in a concentration-dependent manner. LY294002 abrogated the upregulation of p-AKT expression levels induced by simvastatin, and LY294002 induced the miR-9 expression and simvastatin dose-dependently inhibited the expression of miR-9, by contrast, LY294002 reduced the KLF5 expression and simvastatin dose-dependently promoted the expression of KLF5. And using computational analysis, KLF5 was found to be a candidate target gene of miR-9, and which was further verified using luciferase assay. Finally, the level of KLF5 in cells was much lower following the transfection with miR-9 and KLF5 siRNA, and the level of AKT mRNA in cells was significantly inhibited after transfection with AKT siRNA than control. These findings suggested simvastatin could promote the proliferation of pulp stem cells, possibly by suppressing the expression of miR-9 via activating the PI3K/AKT signalling pathway, and the downregulation of miR-9 upregulated the expression of its target gene, KLF5, which is directly responsible for the enhanced proliferation of pulp stem cells.  相似文献   

12.
摘要 目的:探讨蜂毒素通过下调F2RL1表达从而遏制胶质瘤细胞荷瘤小鼠肿瘤增殖的机制。方法:40只雄性 NOD/SCID小鼠(5周龄,15-18 g)购自北京维塔河实验动物技术公司。实验前,让小鼠适应环境一周。NOD/SCID 小鼠在右侧海马体中注射了2×105 U87-MG细胞建立异种移植模型。当肿瘤体积增长到100 mm3时,将小鼠随机分为模型组(空腹注射生理盐水)和蜂毒素组(腹腔注射5 mg/kg 蜂毒素),每组20只小鼠。在第5天(注射的第5天)、第10天、第15天每次处死5只小鼠,通过实时PCR分析小鼠肿瘤组织中F2RL1、Bcl-2、Bax和Capase-3的mRNA表达。使用卡尺测量荷瘤小鼠肿瘤体积,使用电子天平对肿瘤组织进行称重测量。通过蛋白印迹分析肿瘤组织中p-PI3K、p-AKT 和p-mTOR的蛋白表达。通过TUNEL染色检测人脑肿瘤中凋亡细胞的百分比。结果:蜂毒素组F2RL1 mRNA表达较模型组降低(P<0.05),蜂毒素抑制F2RL1 mRNA表达。第5 d、10 d和15 d测得肿瘤体积发现蜂毒素肿瘤体积较模型组减小(P<0.05)。第5 d、10 d和15 d测得肿瘤体积发现蜂毒素肿瘤重量较模型组减轻(P<0.05)。蜂毒素组p-PI3K、p-AKT 和p-mTOR的蛋白表达较模型组降低(P<0.05)。蜂毒素组Bax和Capase-3的mRNA表达较模型组降低(P<0.05),蜂毒素组Bcl-2 mRNA表达较模型组升高(P<0.05)。蜂毒素组TUNEL阳性细胞的百分比较较模型组升高(P<0.05)。结论:蜂毒素通过下调肿瘤小鼠体内F2RL1表达抑制PI3K/AKT信号通路激活,促进了体内肿瘤细胞凋亡,从而有效抑制经胶质瘤细胞的生长、增殖。  相似文献   

13.
14.
IRS1 and IRS2 are key substrates of the insulin receptor tyrosine kinase. Mass spectrometry reveals more than 50 phosphorylated IRS1 serine and threonine residues (Ser(P)/Thr(P) residues) in IRS1 from insulin-stimulated cells or human tissues. We investigated a subset of IRS1 Ser(P)/Thr(P) residues using a newly developed panel of 25 phospho-specific monoclonal antibodies (αpS/TmAbIrs1). CHO cells overexpressing the human insulin receptor and rat IRS1 were stimulated with insulin in the absence or presence of inhibitors of the PI3K → Akt → mechanistic target of rapamycin (mTOR) → S6 kinase or MEK pathways. Nearly all IRS1 Ser(P)/Thr(P) residues were stimulated by insulin and significantly suppressed by PI3K inhibition; fewer were suppressed by Akt or mTOR inhibition, and none were suppressed by MEK inhibition. Insulin-stimulated Irs1 tyrosine phosphorylation (Tyr(P)Irs1) was enhanced by inhibition of the PI3K → Akt → mTOR pathway and correlated with decreased Ser(P)-302Irs1, Ser(P)-307Irs1, Ser(P)-318Irs1, Ser(P)-325Irs1, and Ser(P)-346Irs1. Metabolic stress modeled by anisomycin, thapsigargin, or tunicamycin increased many of the same Ser(P)/Thr(P) residues as insulin, some of which (Ser(P)-302Irs1, Ser(P)-307Irs1, and four others) correlated significantly with impaired insulin-stimulated Tyr(P)Irs1. Thus, IRS1 Ser(P)/Thr(P) is an integrated response to insulin stimulation and metabolic stress, which associates with reduced Tyr(P)Irs1 in CHOIR/IRS1 cells.  相似文献   

15.
To understand the relationship between epidermal growth factor receptor (EGFR) and axon regeneration and the mechanisms of how EGFR regulates the neuronal intrinsic regenerative ability, we evaluated the levels of mRNA and protein of EGFR、total mammalian target of rapamycin (mTOR), p‐mTORSer2448, total Akt and p‐AktSer473 in rats of different developmental stage by using Western blot and real‐time polymerase chain reaction analysis. Axon protein tau and neuron proteins β‐tubulin/neurofilament (NF) were assessed to evaluate the extent of the axon regeneration in cultured neuron cells. Expressions of EGFR、total mTOR, p‐mTORSer2448, total Akt and p‐AktSer473 in cultured neuron cells were also detected using Western blot analysis. Our results showed that the expressions of EGFR and mTOR dropped off with the ageing of the rats, and Ser473 phosphorylation of Akt and Ser2448 phosphorylation of mTOR were highly expressed in foetal and newborn rats but decreased obviously in adult rats. tau, β‐tubulin and NF were upregulated when EGFR was overexpressed and down‐regulated after EGFR was blocked. The phosphorylation of mTOR and Akt was apparently elevated when EGFR was overexpressed and decreased when EGFR was blocked, which suggested that EGFR has the potential to regulate the neuronal intrinsic regeneration and mTOR and PI3K/Akt pathway activation may have an important role in it. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The loss of endothelial cells (ECs) homeostasis is a trigger for cerebrovascular dysfunction that is a common event in several neurodegenerative disorders such as Alzheimer’s disease (AD). The present work addressed the role of phosphatase 2A (PP2A) in cytoskeleton rearrangement, endoplasmic reticulum (ER) homeostasis, ER–mitochondria communication and mitochondrial dynamics in brain ECs. For this purpose, rat brain endothelial (RBE4) cells were exposed to okadaic acid, a well-known inhibitor of PP2A activity. An increase in the levels of tau phosphorylated on Ser396 and Thr181 residues was observed upon PP2A inhibition, concomitantly with the rearrangement of microtubules and actin cytoskeleton. Under these conditions, an increase in the levels of ER stress markers, namely GRP78, XBP1, p-eIF2αSer51, and ERO1α, was observed. Moreover, PP2A inhibition upregulated the Sigma-1 receptor, an ER chaperone located at the ER–mitochondria interface, and enhanced inter-organelle Ca2+ transfer, culminating in mitochondrial Ca2+ overload and activation of mitochondria-dependent apoptosis. The inhibition of PP2A activity also promoted an alteration of the structural and spatial mitochondria network due to upregulation of mitochondrial fission (Drp1 and Fis1) and fusion (Mfn1, Mfn2 and OPA1) proteins, suggesting detrimental changes in mitochondrial dynamics. In accordance with our in vitro observations, brain vessels from 3xTg-AD mice showed a significant decrease in PP2A protein levels accompanied by an increase in tau phosphorylated on Ser396 and GRP78 protein levels. Collectively, these results suggest that the loss of cerebrovascular homeostasis that occurs in AD might be a downstream event of the compromised activity and/or expression of PP2A, which is observed in the brain of individuals affected with this devastating neurodegenerative disorder.  相似文献   

17.
该研究探讨了泛素样含PDH和环指域1(UHRF1)对甲状腺乳头状癌(papillary thyroid carcinoma,PTC)细胞增殖、侵袭和迁移的影响。应用Real-time PCR检测正常甲状腺细胞Nthyori3-1、甲状腺乳头状癌细胞BCPAP和K1中UHRF1 mRNA、miR-206和ERαmRNA的表达水平;Real-time PCR检测UHRF1过表达或干扰对miR-206和ERαmRNA的表达影响;MTT、Transwell检测UHRF1过表达或干扰对Nthy-ori3-1、BCPAP、K1细胞增殖、侵袭和迁移影响;Western blot和双荧光素酶报告实验分析miR-206与ERα的靶向关系。结果表明,与Nthy-ori3-1细胞相比,BCPAP和K1细胞中UHRF1 mRNA和ERαmRNA表达水平显著增高(P<0.05),而miR-206表达水平显著降低(P<0.05);UHRF1过表达或干扰处理细胞后,miR-206表达水平与之变化趋势相反,而ERα表达水平与之变化趋势相同;UHRF1促进Nthy-ori3-1、BCPAP和K1细胞增殖、侵袭和迁移;Western blot和双荧光素酶报告实验证实,miR-206靶向ERα基因并抑制其表达。以上结果说明,UHRF1可通过miR-206调控ERα表达,促进甲状腺乳头状癌细胞增殖、侵袭和迁移。  相似文献   

18.
Lactoferrin has been associated with insulin sensitivity in vivo and in vitro studies. We aimed to test the effects of lactoferrin on human subcutaneous and visceral preadipocytes. Human subcutaneous and visceral preadipocytes were cultured with increasing lactoferrin (hLf, 0.1, 1, 10 μM) under differentiation conditions. The effects of lactoferrin on adipogenesis were studied through the expression of different adipogenic and inflammatory markers, AMPK activation and Retinoblastoma 1 (RB1) activity. The response to insulin was evaluated through Ser473AKT phosphorylation. In both subcutaneous and visceral preadipocytes, lactoferrin (1 and 10 μM) increased adipogenic gene expressions and protein levels (fatty acid synthase, PPARγ, FABP4, ADIPOQ, ACC and STAMP2) and decreased inflammatory markers (IL8, IL6 and MCP1) dose-dependently in parallel to increased insulin-induced Ser473AKT phosphorylation. In addition to these adipogenic effects, lactoferrin decreased significantly AMPK activity (reducing pThr172AMPK and pSer79ACC) and RB1 activity (increasing the pser807/811RB1/RB1 ratio). In conclusion, these results suggest that lactoferrin promotes adipogenesis in human adipocytes by enhancing insulin signaling and inhibiting RB1 and AMPK activities.  相似文献   

19.
Selective amino acid restriction targets mitochondria resulting in DU145 and PC3 prostate cancer cell death. This study shows that restriction of tyrosine and phenylalanine (Tyr/Phe), glutamine (Gln), or methionine (Met) differentially modulates glucose metabolism, glycogen synthase kinase 3β (GSK3β), p53, and pyruvate dehydrogenase (PDH) in these two cell lines. In DU145 cells, Gln and Met restriction increase glucose consumption, but Tyr/Phe restriction does not. Addition of glucose to culture media diminishes cell death induced by Tyr/Phe‐restriction. Addition of pyruvate reduces cell death due to Tyr/Phe and Gln restriction. Tyr/Phe, Gln and Met restriction increase phosphorylation of GSK3β‐Ser9, phosphorylation of p53‐Ser15 and reduce the mitochondrial localization of PDH. Addition of glucose or pyruvate to cultures significantly reverses the alterations in GSK3β, p53 and PDH induced by amino acid restriction. In p53‐null PC3 cells, Tyr/Phe, Gln and Met restriction decreases glucose consumption, reduces phosphorylation of Akt‐Ser473, and increases phosphorylation of GSK3β‐Ser9. Addition of pyruvate or glucose reduces death of Met‐restricted cells. Addition of glucose increases phosphorylation of Akt‐Ser473 in amino acid‐restricted cells reduces phosphorylation of GSK3β‐Ser9 in Tyr/Phe and Gln restricted cells and increases phosphorylation of GSK3β‐Ser9 in Met restricted cells. Addition of pyruvate reduces phosphorylation of GSK3β‐Ser9 in all amino acid‐restricted cells. In summary, cell death induced by specific amino acid restriction is dependent on or closely related to the modulation of glucose metabolism. GSK3β (DU145 and PC3) and p53 (DU145) are crucial switches connecting metabolism and these signaling molecules to cell survival during amino acid restriction. J. Cell. Physiol. 224: 491–500, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
目的 为了探究miR-375是否通过影响基质金属蛋白酶13(MMP13)的表达来调控骨肉瘤(osteosarcoma,OS)恶性特征。方法 用Lipofectamine 3000试剂盒将质粒、miRNA转染至骨肉瘤细胞和HEK293细胞中。实时定量聚合酶链反应(real-time quantitative PCR,RT-qPCR)检测OS患者和OS细胞中miR-375和MMP13的表达。蛋白质印迹法(Western blot)分析OS患者和OS细胞中MMP13蛋白的表达。双荧光素酶法分析miR-375与MMP13的靶向关系。伤口愈合和transwell实验分别分析OS细胞的迁移和侵袭。结果 OS组织中miR-375的表达低于正常组织。MMP13在OS组织中表达上调。在OS患者中,MMP13的表达与miR-375呈负相关。与转染miRNA对照的OS细胞相比,转染miR-375模拟物OS细胞的迁移和侵袭明显被抑制。MMP13能部分逆转miR-375对OS细胞迁移和侵袭的抑制作用。结论 在OS细胞中,过表达miR-375通过调控MMP13的表达抑制细胞的迁移和侵袭。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号