首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
The present study has evaluated the chemopreventive effects of gossypol on N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)-induced gastric carcinogenesis and on human gastric adenocarcinoma (AGS) cell line. Gossypol, C30H30O8, is a polyphenolic compound that has anti proliferative effect and induces apoptosis in various cancer cells. The aim of this work was to delineate in vivo and in vitro anti-initiating mechanisms of orally administered gossypol in target (stomach) tissues and in human gastric adenocarcinoma (AGS) cell line. In vitro results prove that gossypol has potent cytotoxic effect and inhibit the proliferation of adenocarcinoma (AGS) cell line. In vivo results prove gossypol to be successful in prolonging the survival of MNNG induced cancer bearing animals and in delaying the onset of tumor in animals administrated with gossypol and MNNG simultaneously. Examination of the target (stomach) tissues in sacrificed experimental animals shows that administration of gossypol significantly reduces the level of tumor marker enzyme (carcino embryonic antigen) and pepsin. The level of Nucleic acid contents (DNA and RNA) significantly reduces, and the membrane damage of glycoprotein subsides, in the target tissues of cancer bearing animals, with the administration of gossypol. These data suggest that gossypol may create a beneficial effect in patients with gastric cancer.  相似文献   

2.
【目的】细胞热漂移测定(cell thermal shift assay, CETSA)技术是一种检测细胞内药物(配体)和蛋白质(靶标)相互作用的技术,原理是当蛋白质结合药物后,其热稳定性会发生变化,通过测定这种变化去鉴定药物和蛋白之间的相互作用。本研究以治疗多发性骨髓瘤的靶向药帕比司他(panobinostat)为例,建立基于蛋白印迹杂交(Western blotting)和CETSA技术的药物靶蛋白鉴定的标准操作流程。【方法】首先用药物panobinostat处理培养的K562细胞,然后加热处理细胞、裂解细胞及提取可溶性蛋白,以及用抗靶蛋白的抗体经Western blotting定量可溶性蛋白。【结果】经Western blotting定量及曲线拟合,成功得到3个蛋白——组蛋白去乙酰化酶(histone deacetylase,HDAC1)、人突触蛋白(humansyntaxin-4,STX4)以及四三肽重复结构域(tetratricopeptiderepeat domain38,TTC38)随温度变化的热熔解曲线和恒定温度条件下的药物剂量反应曲线。【结论】HDAC1、STX4及T...  相似文献   

3.
The nuclear constitutive active/androstane receptor (CAR) is inactivated and sequestered in the cytoplasm when Thr-38 is phosphorylated. Here, we have demonstrated that activated ERK1/2 interacts with phosphorylated CAR to repress dephosphorylation of Thr-38. The phosphorylation-dependent interaction between CAR and ERK1/2 was examined by co-immunoprecipitation experiments of ectopically expressed FLAG-tagged CAR T38A and CAR T38D mutants with endogenous phospho-ERK1/2 in Huh-7 cells. Phospho-ERK1/2 coprecipitated only the phosphorylation-mimicking CAR T38D mutant; this coprecipitation was mediated by the interaction with the xenochemical response signal peptide near the C terminus of CAR. This interaction increased after EGF treatment and decreased after treatment with the MEK inhibitor U0126 as well as after knockdown of MEK1/2 by shRNA in Huh-7 cells. The phosphorylation levels of Thr-38 of CAR decreased in U0126-treated Huh-7 cells. Thus, activated ERK1/2 interacts with CAR and represses dephosphorylation of Thr-38, providing a cell signal-regulated mechanism for CAR activation.  相似文献   

4.
Hydroxysafflor yellow A (HSYA), a main component of safflor yellow, has been demonstrated to prevent steroid-induced avascular necrosis of femoral head by inhibiting primary bone marrow-derived mesenchymal stromal cells adipogenic differentiation induced by steroid. In this study, we investigate the effect of HSYA on the proliferation and adipogenesis of mouse 3T3-L1 preadipocytes. The effects of HSYA on proliferation and differentiation of 3T3-L1 cells and its possible mechanism were studied by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide spectrophotometry, Oil Red O staining, intracellular triglyceride assays, real-time quantitative RT-PCR, transient transfection and dual luciferase reporter gene methods. HSYA inhibited the proliferation of 3T3-L1 preadipocytes and cell viability greatly decreased in a dose and time dependent manner. HSYA (1 mg/l) notably reduced the amount of intracellular lipid and triglyceride content in adipocytes by 21.3 % (2.13 ± 0.36 vs 2.71 ± 0.40, P < 0.01) and 22.6 % (1.33 ± 0.07 vs 1.72 ± 0.07, P < 0.01) on days 8 following the differentiation, respectively. HSYA (1 mg/l) significantly increased hormone-sensitive lipase (HSL) mRNA expression and promoter activities by 2.4- and 1.55-fold, respectively (P < 0.01), in differentiated 3T3-L1 adipocytes. HSYA inhibits the proliferation and adipogenesis of 3T3-L1 preadipocytes. The inhibitory action of HYSA on adipogenesis may be due to the promotion of lipolytic-specific enzyme HSL expression by increasing HSL promoter activity.  相似文献   

5.
张晔  孙丽萍  陈威  白雪蕾  刘谨  王旭光  刘云鹏  袁媛 《遗传》2007,29(3):293-300
为了分析中国北方人群谷胱甘肽转硫酶P1基因(glutathione-S-transferase P1, GSTP1)多态性分布, 同时探讨GSTP1基因多态性及其与幽门螺杆菌(H. pylori)既往感染联合作用对胃癌发病风险的影响, 采用多聚酶链反应-限制性片段长度多态性(PCR-RFLP)技术检测1,612例外周血DNA GSTP1的多态性; 采用ELISA方法检测血清H. pylori IgG。结果显示, (1) 中国北方人群GSTP1基因Val等位基因分布频率为22%, 胃癌高、低发区GSTP1 Val等位基因分布频率有显著性差异(0.23/0.20); (2) 以Ile/Ile基因型为参照组与其他两种基因型比较进行胃癌的风险分析, 结果显示携带Val/Val基因型的个体患胃癌的危险性最大, 其OR为5.588 (3.256 ~ 9.591); 携带Val等位基因的个体患胃癌危险性是非携带Val等位基因个体的1.587倍; (3) 以H. pylori IgG(-)并携带GSTP1基因纯合野生型(Ile/ Ile)的个体为参照, H. pylori IgG(+)并携带纯合多态基因型(Val/Val)的个体患胃癌的风险最高, OR为17.571(6.207 ~ 49.742)。说明GSTP1 Val等位基因的分布存在人群及地区差异。携带GSTP1 Val等位基因的个体胃癌发病风险增高。GSTP1 Val等位基因纯合型与H. pylori感染对于胃癌的发生具有交互作用。  相似文献   

6.
7.
Background information. Pdcd4 (programmed cell death 4) is up‐regulated during apoptosis and seems to play an important role as a tumour suppressor. To gain further insights into its biological functions, we suppressed Pdcd4 expression in the neuroendocrine cell line Bon‐1 via siRNA (small interfering RNA) technology. Results. Using this cell line, we found that suppression of Pdcd4 resulted in an increased release of CgA (chromogranin A) and Sg II (secretogranin II), and was accompanied by an up‐regulation of intracellular PC1 (proprotein convertase 1/3). The enhanced secretion of CgA and Sg II seemed to be mediated by an activation of protein kinase Akt via PI3K (phosphoinositide 3‐kinase). In accordance with this, inhibition of PI3K activity and, thereby, reduced phosphorylation of Akt was shown to enhance Pdcd4 expression. Neither the PKC (protein kinase C) signal transduction cascade nor the MAPK (mitogen‐activated protein kinase) pathway seemed to play a role in the regulation of CgA and Sg II secretion by Pdcd4. Conclusions. CgA is considered to be a marker for neuroendocrine tumours, and up‐regulation of PC1 has been reported in various types of cancers. The repression of PC1 by Pdcd4 may represent a novel mechanism for the function of Pdcd4 as a tumour suppressor. Our results are of particular interest, as we observed that pioglitazone, an oral medication used in the treatment of Type 2 diabetes, decreased Pdcd4 levels, activated Akt, increased CgA and Sg II secretion and augmented PC1 protein in Bon‐1 cells. Enhanced PC1 levels, leading to improved processing of proinsulin and proglucagon, may contribute to the benefits of pioglitazone therapy. The in vivo relevance of our findings was highlighted by data indicating elevated CgA amounts in the sera of patients treated with pioglitazone. This is the first study connecting Pdcd4 levels, secretion behaviour of neuroendocrine cells and regulation of PI3K activity.  相似文献   

8.
Background: Gastric cancer (GC) metastasis determines the prognosis of patients, and exploring the molecular mechanism of GC metastasis is expected to provide a theoretical basis for clinical treatment. Recent studies have shown that extracellular matrix protein is closely related to GC metastasis. The present study aimed to explore the expression profile and role of COL5A2, as an extracellular matrix protein, in GC.Methods: The expression, overall survival, and progression-free survival data of COL5 family members were extracted from The Cancer Genome Atlas (TCGA) database, respectively. Weighted gene co-expression network analysis of the GSE62229 database was performed out to identify modules and associated genes.Results: COL5A2 was selected as our research target in the TCGA database, and was also verified in the GSE62229 and GSE15459 datasets. COL5A2 was up-regulated in GC tissues by paraffin immunohistochemistry and RT-qPCR. The prognosis of patients with low COL5A2 expression was better than that of patients with high COL5A2 expression. Scratch and migration experiments showed that knockdown of COL5A2 decreased the migration ability of gastric cancer cells compared with the control group. In vivo, mice with tail vein injection COL5A2 knockdown had fewer and smaller metastatic nodules in liver. GSEA results showed that the TCGA and GSE62229 samples were significantly enriched in several well-known cancer-related pathways, such as the TGF-β, MAPK, and JAK2 signaling pathways.Conclusion: COL5A2 was most closely related to advanced GC among COL5 family members. High COL5A2 expression is associated with a poor prognosis, and may be a novel therapeutic target for GC.  相似文献   

9.
Mannheimia haemolytica and Bibersteinia (Pasteurella) trehalosi are the most common bacterial isolates that cause pulmonary diseases in ruminants worldwide. The disease is determined by specific serotypes found in cattle and small ruminants. The molecular epidemiology of strains involved in disease is important in the control of outbreaks as well as in the preparation of vaccines. This study aimed to detect the instability and variations of bacterial strains that may affect the analysis of epidemic strains, or the stability of vaccinal strains. Eight strains of M. haemolytica belonging to serotypes A1 and A2 and three B. trehalosi strains of the T3 and T4 serotypes were used. Strains were subjected to pulsed field gel electrophoresis (PFGE) and capsular and phenotypic typing at each round of a total of 50 successive subcultures. Remarkable stability was found in all selected strains of B. trehalosi in contrast to M. haemoltyica, in which strains of both serotypes showed pattern variations produced by PFGE and capsular and phenotypic analysis. Objective criteria for M. haemolytica and B. trehalosi typing are consequently addressed.  相似文献   

10.
Polyclonal antibodies, raised against ((1→3), (1→4)-β-D-glucans from oat ( Avena sativa L.) caryopsis, were used to investigate the location and the metabolism of mixed-linked β-D-glucans. The binding of these antibodies to the cell walls of oat coleoptiles was shown by an indirect fluorescence method. Distinct fluorescent regions were observed along the inner layers of the walls of each cell. The preimmune serum or antibodies pretreated with oat caryopsis β-D-glucans did not react with the cell walls. Glucan antibodies were bound to the walls of other Poaceae coleoptiles as well as to those from oat mesocotyls and roots, whereas they were not bound to the walls of some dicotyledons tested. The relative glucan content of the cell walls of oat coleoptiles as determined by β-D-glucanase (EC 3.2.1.73) treatment was maximum between day 3 and 4 after soaking, but it declined during further elongation. A rapid decrease in glucan content was observed in excised coleoptiles when auxin or β-D-glucanase was present. There was a clear correlation between the glucan content expressed on a basis of cell wall polysaccharides and the amount of the antibodies bound to the cell walls. These results indicate that the antibodies are useful probes to detect and determine (1→3), (1→4)-β-D-glucans of cell walls.  相似文献   

11.
The levels of endogenous gibberellin A1 (GA1), GA3, GA4, GA9 and a cellulase-hydrolysable GA9-conjugate in needles and shoot stems of Sitka spruce [Picea sitchensis (Bong.) Carr.] grafts with different coning or flowering histories were estimated by combined gas chromatography-mass spectrometry selected ion monitoring using deuterated GA3, GA4 and GA9 as internal standards. The samples were taken at the approximate time of the start of flower-bud differentiation, i.e. when the shoots had elongated approx. 95% of the final length. The needles of the good-flowering clones contained 11–12 ng per g fresh weight (FW) and 15–28 ng· (g FW) –1 of GA9-conjugate and GA9, respectively. The shoot stems of the same material contained no detectable amounts of GA9-conjugate and 11–15 ng-(g FW)–1 of GA9. The amounts of GA9-conjugate and GA9 were apparently lower in the poor-flowering clones, the needles containing 4–9 ng-(g FW)–1 and 7–17 ng·(g FW)–1, respectively. Also in this material the shoot stems contained no detectable amounts of GA9-conjugate. The amounts of GA4 were very small in both materials, ranging from 1–1.6 ng-(g FW)–1. The good-flowering clones contained no detectable amounts of the more polar gibberellins, GA1 and GA3. The poor-flowering clones, on the other hand, contained high levels of GA15 17–19ng·(gFW)–1 in the needles and 10–13 ng·(g FW) –1 in the shoot stems, and also smaller amounts of GA3, 2–3 ng·(g FW)–1 in the needles and approx. 1 ng·(g FW)–1 in the shoot stems. The results demonstrate differences in GA-metabolism between the poor- and the good-flowering clones. The higher amounts of GA9-conjugate and GA9 might indicate a higher capacity for synthesizing GA4 in the good-flowering material. This synthesis does not, however, result in a build-up of the GA4-pool, maybe because of a high rate of turnover. Gibberellin A4 was apparently neither hydroxylated to GA1 nor converted to GA3 in the goodflowering material, as was the case in the poor-flowering material. This might indicate that gibberellin metabolism in the poor-flowering material is directed towards GA1 and GA3, GAs preferentially used in vegetative growth.Abbreviations FW fresh weight - GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

12.
Consecutive exons 6A, 6B, 7 and 8 that encode the variable region of the amino-terminal domain (NTD) of the col11a1 gene product undergo a complex pattern of alternative splicing that is both tissue-dependent and developmentally regulated. Expression of col11a1 is predominantly associated with cartilage where it plays a critical role in skeletal development. At least five splice-forms (6B-7-8, 6A-7-8, 7-8, 6B-7 and 7) are found in cartilage. Splice-forms containing exon 6B or 8 have distinct distributions in the long bone during development, while in non-cartilage tissues, splice-form 6A-7-8 is typically expressed. In order to study this complex and tissue-specific alternative splicing, a mini-gene that contains mouse genomic sequence from exon 5 to 11, flanking the variable region of α1(XI)-NTD, was constructed. The minigene was transfected into chondrocytic (RCS) and non-chondrocytic (A204) cell lines that endogenously express α1(XI), as well as 293 cells which do not express α1(XI). Alternative splicing in RCS and A204 cells reflected the appropriate cartilage and non-cartilage patterns while 293 cells produced only 6A-7-8. This suggests that 6A-7-8 is the default splicing pathway and that cell or tissue-specific trans-acting factors are required to obtain pattern of the alternative splicing of α1(XI) pre-mRNA observed in chondrocytes. Deletional analysis was used to identify cis-acting regions important for regulating splicing. The presence of the intact exon 7 was required to generate the full complex chondrocytic pattern of splicing. Furthermore, deletional mapping of exon 6B identified sequences required for expression of exon 6B in RCS cells and these may correspond to purine-rich (ESE) and AC-rich (ACE) exonic splicing enhancers.  相似文献   

13.
A good model to experimentally explore evolutionary hypothesis related to enzyme function is the ancient‐like dual‐substrate (βα)8 phosphoribosyl isomerase A (PriA), which takes part in both histidine and tryptophan biosynthesis in Streptomyces coelicolor and related organisms. In this study, we determined the Michaelis–Menten enzyme kinetics for both isomerase activities in wild‐type PriA from S. coelicolor and in selected single‐residue monofunctional mutants, identified after Escherichia coli in vivo complementation experiments. Structural and functional analyses of a hitherto unnoticed residue contained on the functionally important β → α loop 5, namely, Arg139, which was postulated on structural grounds to be important for the dual‐substrate specificity of PriA, is presented for the first time. Indeed, enzyme kinetics analyses done on the mutant variants PriA_Ser81Thr and PriA_Arg139Asn showed that these residues, which are contained on β → α loops and in close proximity to the N‐terminal phosphate‐binding site, are essential solely for the phosphoribosyl anthranilate isomerase activity of PriA. Moreover, analysis of the X‐ray crystallographic structure of PriA_Arg139Asn elucidated at 1.95 Å herein strongly implicates the occurrence of conformational changes in this β → α loop as a major structural feature related to the evolution of the dual‐substrate specificity of PriA. It is suggested that PriA has evolved by tuning a fine energetic balance that allows the sufficient degree of structural flexibility needed for accommodating two topologically dissimilar substrates—within a bifunctional and thus highly constrained active site—without compromising its structural stability.  相似文献   

14.
Lung HL  Ip WK  Wong CK  Mak NK  Chen ZY  Leung KN 《Life sciences》2002,72(3):257-268
A novel approach for the treatment of leukemia is the differentiation therapy in which immature leukemia cells are induced to attain a mature phenotype when exposed to differentiation inducers, either alone or in combinations with other chemotherapeutic or chemopreventive drugs. Over the past decade, numerous studies indicated that green tea catechins (GTC) could suppress the growth and induce apoptosis on a number of human cancer cell lines. However, the differentiation-inducing activity of GTC on human tumors remains poorly understood. In the present study, the effect of the major GTC epigallocatechin-3-gallate (EGCG) on the proliferation and differentiation of a human eosinophilc leukemic cell line, EoL-1, was examined. Our results showed that EGCG suppressed the proliferation of the EoL-1 cells in a dose-dependent manner, with an estimated IC(50) value of 31.5 microM. On the other hand, EGCG at a concentration of 40 microM could trigger the EoL-1 cells to undergo morphological differentiation into mature eosinophil-like cells. Using RT-PCR and flow cytometry, it was found that EGCG upregulated the gene and protein expression of two eosinophil-specific granule proteins, the major basic protein (MBP) and eosinophil peroxidase (EPO), in EoL-1 cells. Taken together, our findings suggest that EGCG can exhibit anti-leukemic activity on a human eosinophilic cell line EoL-1 by suppressing the proliferation and by inducing the differentiation of the leukemia cells.  相似文献   

15.
Dual oxidase 2 is a member of the NADPH oxidase (Nox) gene family that plays a critical role in the biosynthesis of thyroid hormone as well as in the inflammatory response of the upper airway mucosa and in wound healing, presumably through its ability to generate reactive oxygen species, including H2O2. The recently discovered overexpression of Duox2 in gastrointestinal malignancies, as well as our limited understanding of the regulation of Duox2 expression, led us to examine the effect of cytokines and growth factors on Duox2 in human tumor cells. We found that exposure of human pancreatic cancer cells to IFN-γ (but not other agents) produced a profound up-regulation of the expression of Duox2, and its cognate maturation factor DuoxA2, but not other members of the Nox family. Furthermore, increased Duox2/DuoxA2 expression was closely associated with a significant increase in the production of both intracellular reactive oxygen species and extracellular H2O2. Examination of IFN-γ-mediated signaling events demonstrated that in addition to the canonical Jak-Stat1 pathway, IFN-γ activated the p38-MAPK pathway in pancreatic cancer cells, and both played an important role in the induction of Duox2 by IFN-γ. Duox2 up-regulation following IFN-γ exposure is also directly associated with the binding of Stat1 to elements of the Duox2 promoter. Our findings suggest that the pro-inflammatory cytokine IFN-γ initiates a Duox2-mediated reactive oxygen cascade in human pancreatic cancer cells; reactive oxygen species production in this setting could contribute to the pathophysiologic characteristics of these tumors.  相似文献   

16.
The normal cellular prion protein (PrP) is a glycosylphosphatidylinositol (GPI)-anchored cell surface glycoprotein. However, in pancreatic ductal adenocarcinoma cell lines, such as BxPC-3, PrP exists as a pro-PrP retaining its glycosylphosphatidylinositol (GPI) peptide signaling sequence. Here, we report the identification of another pancreatic ductal adenocarcinoma cell line, AsPC-1, which expresses a mature GPI-anchored PrP. Comparison of the 24 genes involved in the GPI anchor modification pathway between AsPC-1 and BxPC-3 revealed 15 of the 24 genes, including PGAP1 and PIG-F, were down-regulated in the latter cells. We also identified six missense mutations in DPM2, PIG-C, PIG-N, and PIG-P alongside eight silent mutations. When BxPC-3 cells were fused with Chinese hamster ovary (CHO) cells, which lack endogenous PrP, pro-PrP was successfully converted into mature GPI-anchored PrP. Expression of the individual gene, such as PGAP1, PIG-F, or PIG-C, into BxPC-3 cells does not result in phosphoinositide-specific phospholipase C sensitivity of PrP. However, when PIG-F but not PIG-P is expressed in PGAP1-expressing BxPC-3 cells, PrP on the surface of the cells becomes phosphoinositide-specific phospholipase C-sensitive. Thus, low expression of PIG-F and PGAP1 is the major factor contributing to the accumulation of pro-PrP. More importantly, BxPC-3 cells expressing GPI-anchored PrP migrate much slower than BxPC-3 cells bearing pro-PrP. In addition, GPI-anchored PrP-bearing AsPC-1 cells also migrate slower than pro-PrP bearing BxPC-3 cells, although both cells express filamin A. “Knocking out” PRNP in BxPC-3 cell drastically reduces its migration. Collectively, these results show that multiple gene irregularity in BxPC-3 cells is responsible for the formation of pro-PrP, and binding of pro-PrP to filamin A contributes to enhanced tumor cell motility.  相似文献   

17.
The essential P-loop NTPases Cfd1 and Nbp35 of the cytosolic iron-sulfur (Fe-S) protein assembly machinery perform a scaffold function for Fe-S cluster synthesis. Both proteins contain a nucleotide binding motif of unknown function and a C-terminal motif with four conserved cysteine residues. The latter motif defines the Mrp/Nbp35 subclass of P-loop NTPases and is suspected to be involved in transient Fe-S cluster binding. To elucidate the function of these two motifs, we first created cysteine mutant proteins of Cfd1 and Nbp35 and investigated the consequences of these mutations by genetic, cell biological, biochemical, and spectroscopic approaches. The two central cysteine residues (CPXC) of the C-terminal motif were found to be crucial for cell viability, protein function, coordination of a labile [4Fe-4S] cluster, and Cfd1-Nbp35 hetero-tetramer formation. Surprisingly, the two proximal cysteine residues were dispensable for all these functions, despite their strict evolutionary conservation. Several lines of evidence suggest that the C-terminal CPXC motifs of Cfd1-Nbp35 coordinate a bridging [4Fe-4S] cluster. Upon mutation of the nucleotide binding motifs Fe-S clusters could no longer be assembled on these proteins unless wild-type copies of Cfd1 and Nbp35 were present in trans. This result indicated that Fe-S cluster loading on these scaffold proteins is a nucleotide-dependent step. We propose that the bridging coordination of the C-terminal Fe-S cluster may be ideal for its facile assembly, labile binding, and efficient transfer to target Fe-S apoproteins, a step facilitated by the cytosolic iron-sulfur (Fe-S) protein assembly proteins Nar1 and Cia1 in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号