首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Precise control of the LPS stimulation in the lung modulates inflammation and airway hyperresponsiveness involving the well-known TLR4/NF-κB pathway. As a consequence, the expression and secretion of proinflammatory cytokines is tightly regulated with the recruitment of neutrophils. Changes in the LPS-induced responses have been observed in the Prmt2-Col6a1 monosomic model, suggesting the presence of dosage-sensitive genes controlling LPS pathway in the mouse. In this article, we report that the Prmt2 regulates the LPS-induced lung responses in lungs and macrophages. We demonstrate that Prmt2 gene dosage influences the lung airway hyperresponsiveness, the recruitment of neutrophils, and the expression of proinflammatory cytokines, such as IL-6 and TNF-α. In addition, Prmt2 loss of function also altered the nuclear accumulation of NF-κB in stimulated macrophages. Prmt2 should be considered as a new member of the NF-κB pathway controlling LPS-induced inflammatory and lung responses in a dosage-dependent manner, certainly through regulating nuclear accumulation of NF-κB as shown already in fibroblasts.  相似文献   

3.
4.
5.
6.
Constitutive NF-κB activation by proinflammatory cytokines plays a major role in cancer progression. However, the underlying mechanism is still unclear. We report here that histone methyltransferase NSD2 (also known as MMSET or WHSC1), a target of bromodomain protein ANCCA/ATAD2, acts as a strong coactivator of NF-κB by directly interacting with NF-κB for activation of target genes, including those for interleukin-6 (IL-6), IL-8, vascular endothelial growth factor A (VEGFA), cyclin D, Bcl-2, and survivin, in castration-resistant prostate cancer (CRPC) cells. NSD2 is recruited to the target gene promoters upon induction and mediates NF-κB activation-associated elevation of histone H3K36me2 and H3K36me3 marks at the promoter, which involves its methylase activity. Interestingly, we found that NSD2 is also critical for cytokine-induced recruitment of NF-κB and acetyltransferase p300 and histone hyperacetylation. Importantly, NSD2 is overexpressed in prostate cancer tumors, and its overexpression correlates with NF-κB activation. Furthermore, NSD2 expression is strongly induced by tumor necrosis factor alpha (TNF-α) and IL-6 via NF-κB and plays a crucial role in tumor growth. These results identify NSD2 to be a key chromatin regulator of NF-κB and mediator of the cytokine autocrine loop for constitutive NF-κB activation and emphasize the important roles played by NSD2 in cancer cell proliferation and survival and tumor growth.  相似文献   

7.
Pneumonia is an inflammatory condition affecting the lungs, in which pro-inflammatory cytokines are secreted. It has been shown that microRNA-146 (miR-146) is involved in the regulation of immune and inflammatory responses. The present study explored the protective effects of miR-146 overexpression on lipopolysaccharide (LPS)-mediated injury in A549 and H1975 cells. In this study, A549 and H1975 cells were transfected with miR-146 mimic or inhibitor, and then were subjected with LPS. Thereafter, cell viability, colony formation capacity, apoptosis, the release of proinflammatory factors, Sirt1 expression, and the expression of NF-κB and Notch pathway proteins were respectively assessed. As a result, miR-146 overexpression exerted protective functions on LPS-damaged A549 and H1975 cells, as evidenced by the increases in cell viability and colony number, the decrease in apoptotic cell rate, as well as the down-regulations of IL-1, IL-6, and TNF-α. Sirt1 can be positively regulated by miR-146. Furthermore, miR-146 overexpression blocked NF-κB and Notch pathways, while these blocking effects were abolished when Sirt1 was silenced. The findings in the current study indicated that miR-146 protected A549 and H1975 cells from LPS-induced apoptosis and inflammation injury. miR-146 exerted protective functions might be via up-regulation of Sirt1 and thereby blocking NF-κB and Notch pathways.  相似文献   

8.
Qi J  Qiao Y  Wang P  Li S  Zhao W  Gao C 《FEBS letters》2012,586(8):1201-1207
Ligation of TLR4 with LPS in macrophages leads to the production of proinflammatory cytokines, which are central to eliminate viral and bacterial infection. However, uncontrolled TLR4 activation may contribute to pathogenesis of inflammatory diseases such as septic shock. In this study, we found microRNA-210 was induced in murine macrophages by LPS. Transfection of miR-210 mimics significantly inhibited LPS-induced production of inflammatory cytokines. In contrast, transfection of anti-miR-210 inhibitors increased LPS-induced expression of proinflammatory cytokines. Furthermore, we demonstrated that miR-210 targets NF-κB1. Therefore, our data identify miR-210 as a very important feedback negative regulator for LPS-induced production of proinflammatory cytokines.  相似文献   

9.
The involvement of retinoblastoma protein-interacting zinc finger 1 (RIZ1), a tumor suppressor, in lipopolysaccharide (LPS)-induced inflammatory responses was investigated by using RAW 264.7 macrophage-like cells. LPS significantly augmented the expression of RIZ1 and the augmentation was mediated by the activation of nuclear factor (NF)-κB and Akt. The silencing of RIZ1 with the siRNA led to the inactivation of NF-κB in response to LPS. Moreover, the RIZ1 silencing caused the down-regulation of p53 activation and a p53 pharmacological inhibitor attenuated the RIZ1 expression. LPS-induced tumor necrosis factor-α and interleukin-6 production was prevented by RIZ1 siRNA or a p53 pharmacological inhibitor. Therefore, RIZ1 was suggested to augment LPS-induced NF-κB activation in collaboration with p53 and enhance the production of proinflammatory cytokines in response to LPS.  相似文献   

10.
11.
12.
Neuroinflammation mediated by microglia has been identified as vital pathogenesis in Parkinson's disease (PD). This study aimed to investigate the role and potential regulatory mechanism of microRNA-330 in the lipopolysaccharide (LPS)-induced chronic neuroinflammatory model. Primary microglia chronic inflammation model and PD animal model were established by LPS treatment. Bulged microRNA-330 sponges containing six microRNA binding sites were constructed and delivered by plasmid or recombinant adeno-associated virus (rAAV2)/5-green fluorescent protein (GFP) vector. The expression levels of microRNA-330 were assessed by a quantitative real-time polymerase chain reaction. Primary microglia polarization was determined by flow cytometry; meanwhile, dopamine and pro-(anti-)inflammatory cytokines were measured by enzyme-linked immunosorbent assay. Expression levels of GFAP, lba1, inducible nitric oxide synthase (iNOS), Arg1, SHIP1, cytoplasmic, and nuclear factor-κB (NF-κB) were analyzed by Western blot. The behavioral deficit was determined by the rotarod test. The expression of microRNA-330 increased in the first 4 days and reached a plateau subsequently after LPS treatment. The sponges-mediated repression effect on M1 polarization was gradually enhanced with time. Treatment of miR-330 sponges increased the SHIP1 and Arg1 expression, and decreased the translocation of NF-κB and iNOS expression, suggesting the repression of inflammation. In the LPS-induced PD mice, administration of rAAV-sponge-GFP suppressed activation of microglia, downregulated proinflammatory cytokines, resumed the secretion of dopamine, rescued the dopaminergic neurons, and alleviated motor dysfunction. Our results demonstrated that microRNA-330 sponges could sustainably suppress LPS-induced polarization of microglia both in vivo and in vitro probably by negatively regulating NF-κB activity via target SHIP1 in microglia, which might be a promising neuroprotective strategy in neurological diseases, such as PD.  相似文献   

13.
14.
15.
16.
Periodontitis is a widespread chronic infectious-inflammatory disease associated with multiple systemic diseases. Visfatin is an adipokine-enzyme that can be locally produced by human periodontal ligament cells (hPDLCs) and human gingival fibroblasts (hGFs). It can upregulate proinflammatory cytokines and matrix metalloproteinases (MMPs) in various types of cells. However, the effects of visfatin on healthy and inflammatory human periodontal cells as well as the underlying molecular mechanisms remain unclear. This study firstly demonstrated visfatin expression was highly elevated in inflamed human gingiva and Pg LPS-treated hPDLCs. Moreover, recombinant visfatin significantly upregulated the expression of proinflammatory cytokines (TNF-α, IL-1β and IL-6) and prodegradative factors (EMPPRIN, MMP1, MMP3 and MMP13) in hPDLCs. Next, we found the levels of proinflammatory and prodegradative cytokines were significantly increased in visfatin-overexpressing hPDLCs, and decreased in visfatin-silencing inflammatory hGFs (iGFs) when treated with Pg LPS. In the absence of Pg LPS, visfatin silencing failed to affect the expression of these factors in iGFs, and overexpression of visfatin upregulated MMPs but no other factors in hPDLCs. Furthermore, marked NF-κB pathway activation with increased phosphorylation of p65 was observed in visfatin-overexpressing hPDLCs. BAY11-7082, a specific inhibitor of NF-κB, partially reversed the upregulation proinflammatory and prodegradative factors induced by visfatin overexpression. Taken together, this study showed that visfatin critically regulates Pg LPS-induced proinflammatory/prodegradative effects in healthy and inflammatory periodontal cells partially via NF-κB pathway. The findings suggest that visfatin is closely involved in the development of periodontitis, and may serve as a promising novel biomarker and therapeutic target for periodontitis management.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号