首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Papillary thyroid cancer (PTC) is a kind of thyroid cancer and frequently presents with epithelial–mesenchymal transition (EMT). MicroRNAs (miRNAs) were previously reported to be associated with PTC. Thus, this study aims to define the role of microRNA-520a-3p (miR-520a-3p) in PTC through the JAK/STAT signaling pathway by targeting JAK1. The PTC and normal thyroid tissues of 137 PTC patients were collected. First of all, the expression pattern of miR-520a-3p, JAK1, JAK2, STAT3, E-cadherin, and vimentin in PTC was identified. The relationship between miR-520a-3p and JAK1 was predicted and analyzed. And a series of miR-520a-3p mimic or inhibitor, or siRNA JAK1 introduced into PTC cells were applied to examine the effect of miR-520a-3p on PTC cell viability, migration, invasion, cell cycle, apoptosis, and EMT. Meanwhile, the regulatory effect of miR-520a-3p and JAK1 on the JAK/STAT signaling pathway was also determined. The expression of JAK1, JAK2, STAT3, and vimentin increased yet miR-520a-3p and E-cadherin decreased in PTC tissue. JAK1 was negatively regulated by miR-520a-3p. Functionally, EMT induction was prevented by miR-520a-3p upregulation through downregulating JAK1. When upregulating miR-520a-3p or silencing JAK1 in PTC cells, PTC cell viability, migration, and invasion were inhibited yet cell apoptosis promoted with cells arrested at G1 phase, indicating that miR-520a-3p prevented PTC progression by downregulating JAK1. Moreover, miR-520a-3p elevation or JAK1 inhibition inactivated the JAK/STAT signaling pathway. Collectively, miR-520a-3p prevents cancer progression through inactivating the JAK/STAT signaling pathway by downregulating JAK1 in PTC.  相似文献   

2.
Li  YaJie  Zhao  Yan  Li  Yi  Zhang  XiaoYi  Li  Chao  Long  NiYa  Chen  XueShu  Bao  LiYa  Zhou  JianJiang  Xie  Yuan 《Journal of physiology and biochemistry》2021,77(1):93-104
Journal of Physiology and Biochemistry - Gastric cancer (GC) is one of the most common cancers, with most patients often succumbing to death as a result of tumor metastasis. Recent work has...  相似文献   

3.
Lung cancer is the leading cause of cancer-related death worldwide. Hypoxia is known to increase cancer cell migration and invasion. We have previously reported that hypoxia induces epithelial–mesenchymal transition (EMT) in lung cancer cells. However, it is unknown whether hypoxia promotes lung cancer cell migration and invasion via EMT and whether cyclic AMP (cAMP) dependent protein kinase (PKA) plays a role in this process. We found that hypoxia increased PKA activity and induced mRNA and protein expression of PKA catalytic subunit α (PKACA), and regulatory subunits R1A and R1B. Knockdown of HIF-1/2α prevented hypoxia-mediated induction of PKACA mRNA expression and PKA activity. Inhibition of PKA activity with chemical inhibitors prevented EMT induced by hypoxia and tumor growth factor β1. However, activation of PKA by forskolin and 8-Br-cAMP did not induce EMT. Furthermore, treatment with H89 and knockdown of PKACA prevented hypoxia-mediated, EMT, cell migration, and invasion, whereas overexpression of mouse PKACA rescued hypoxia-mediated migration and invasion in PKACA deficient cancer cells. Our results suggest that hypoxia enhances PKA activity by upregulating PKA gene expression in a HIF dependent mechanism and that PKA plays a key role in hypoxia-mediated EMT, migration, and invasion in lung cancer cells.  相似文献   

4.
Lung cancer ranks topmost among the most frequently diagnosed cancers. Despite increasing research, there are still unresolved mysteries in the molecular mechanism of lung cancer. Long noncoding RNA small nucleolar RNA host gene 11 (SNHG11) was found to be upregulated in lung cancer and facilitated lung cancer cell proliferation, migration, invasion, and epithelial–mesenchymal transition progression while suppressed cell apoptosis. Moreover, the high expression of SNHG11 was correlated with poor prognosis of lung cancer patients, TNM stage, and tumor size. Further assays demonstrated that SNHG11 functioned in lung cancer cells via Wnt/β-catenin signaling pathway. Subsequently, Wnt/β-catenin pathway was found to be activated through SNHG11/miR-4436a/CTNNB1 ceRNA axis. As inhibiting miR-4436 could only partly rescue the suppression of cell function induced by silencing SNHG11, it was suspected that β-catenin might enter cell nucleus through other pathways. Mechanism investigation proved that SNHG11 would directly bind with β-catenin to activate classic Wnt pathway. Subsequently, in vivo tumorigenesis was also demonstrated to be enhanced by SNHG11. Hence, SNHG11 was found to promote lung cancer progression by activating Wnt/β-catenin pathway in two different patterns, implying that SNHG11 might contribute to lung cancer treatment by acting as a therapeutic target.  相似文献   

5.
6.
7.
Ras homolog gene family member A (RhoA) has been iden- tified as a critical regulator of tumor aggressive behavior. In this study, we assessed the role of RhoA in the mechan- isms underlying growth, migration, and invasion of squa- mous cell carcinoma of tongue (TSCC). Stable RhoA knockdown of TSCC cell lines SCC-4 and CAL27 were achieved using Lentiviral transfection. The effects of RhoA depletion on cell migration, invasion, and cell proliferation were determined. The possible underlying mechanism of RhoA depletion on TSCC cell line was also evaluated by determining the expression of Galectin-3 (Gal-3), β-catenin, and matrix metalloproteinase-9 (MMP-9) in vivo. Meanwhile, the underlying mechanism of TSCC growth was studied by analysis of cyclin D1/2, p21clel/WArl, and p27 kiap 1 protein levels. Immunohistochemical assess- ments were performed to further prove the alteration of Gal-3 and β-catenin expression. We found that, in mice injected with human TSCC cells in the tongue, RhoA levels were higher in primary tumors and metastasized lymph nodes compared with those in the normal tissues. Silencing of RhoA significantly reduced the tumor growth, decreased the levels of Gai-3, β-catenin, MMP-9, and cyclin D1/2, and increased the levels of p21 CIPI/WAFI and p27Kiap 1. In vitro, RhoA knockdown also led to inhibition of cell migration, in- vasion, and proliferation. Our data suggest that RhoA plays a significant role in TSCC progression by regulating cell migra- tion and invasion through Wnt/β-catenin signaling pathway and cell proliferation through cell cycle regulation, respecti- vely. RhoA might be a novel therapeutic target of TSCC.  相似文献   

8.
Cutaneous wounds, a type of soft tissue injury, are difficult to heal in aging. Differentiation, migration, proliferation, and apoptosis of skin cells are identified as key factors during wound healing processes. Mesenchymal stem cells have been documented as possible candidates for wound healing treatment because their use could augment the regenerative capacity of many tissues. However, the effects of exosomes derived from adipose-derived stem cell (ADSC-exos) on cutaneous wound healing remain to be carefully elucidated. In this present study, HaCaT cells were exposed to hydrogen peroxide (H2O 2) for the establishment of the skin lesion model. Cell Counting Kit-8 assay, migration assay, and flow cytometry assay were conducted to detect the biological function of ADSC-exos in skin lesion model. Finally, the possible mechanism was further investigated using Western blot assay. The successful construction of the skin lesion model was confirmed by results of the enhanced cell apoptosis of HaCaT cells induced by H 2O 2, the increased Bax expression and decreased Bcl-2 expression. CD9 and CD63 expression evidenced the existence of ADSC-exos. The results of functional experiments demonstrated that ADSC-exos could prompt cell proliferation and migration of HaCaT cells, and repress cell apoptosis of HaCaT cells. In addition, the activation of Wnt/β-catenin signaling was confirmed by the enhanced expression of β-catenin at the protein level. Collectively, our findings suggest that ADSC-exos play a positive role in cutaneous wound healing possibly via Wnt/β-catenin signaling. Our study may provide new insights into the therapeutic target for cutaneous wound healing.  相似文献   

9.
Hepatocellular carcinoma (HCC) is mainly associated with hepatitis B virus (HBV) infection and characterized by metastasizing and infiltrating adjacent and distant tissues. Notably, microRNA-1271 (miR-1271) is a tumor suppressor in various cancers. Therefore, we evaluate the ability of miR-1271 to influence cell proliferation, migration, invasion, and apoptosis in HBV-associated HCC through the Adenosine monophosphate–activated protein kinase (AMPK) signaling pathway via targeting CCNA1. HBV-associated HCC and adjacent normal tissues were collected to identify the expression of miR-1271 and CCNA1. To verify the relationship between miR-1271 and CCNA1, we used bioinformatics prediction and the dual-luciferase reporter gene assay. The effects of miR-1271 on HBV-associated HCC cell behaviors were investigated by treatment of the miR-1271 mimic, the miR-1271 inhibitor, or small interfering RNA against CCNA1. The HBV-DNA quantitative assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromid assay, scratch test, transwell assay, and flow cytometry were used to detect HBV-DNA replication, cell proliferation, invasion, migration, and apoptosis. MiR-1271 showed a low expression, whereas CCNA1 showed a high expression in HBV-associated HCC tissues. We identified that miR-1271 targeted and negatively regulated CCNA1. Upregulated miR-1271 and downregulated CCNA1 inhibited the HBV-associated HCC cell HBV-DNA replication, proliferation, migration, and invasion, while accelerating apoptosis by activating the AMPK signaling pathway. MiR-1271 promotes the activation of the AMPK signaling pathway by binding to CCNA1, whereby miR-1271 suppresses HBV-associated HCC progression. This study points to a potential therapeutic approach of downregulation of miR-1271 in HBV-associated HCC treatment.  相似文献   

10.
Long noncoding RNAs (lncRNAs) were identified as a vital part in the development and progression of cancer in recent years. Colorectal neoplasia differentially expressed (CRNDE), a lncRNA, functions as an oncogene in some malignant neoplasias, but its role in the progression of osteosarcoma (OS) is still poorly understood. To dissect the difference in the expression of CRNDE, quantitative real-time polymerase chain reaction was utilized to evaluate it in OS tissues and cell lines (U2OS, MG63, and MNNG/HOS) compared with that in the adjacent normal tissues/osteoblast cells (hFOB1.19). The role of CRNDE in OS lines was assessed using Cell Counting Kit-8, colony formation, 5-ethynyl-2′-deoxyuridine staining, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining, flow cytometry, Transwell assays, and Western blot, respectively. The results demonstrated that the expression of CRNDE was high in OS tissues and cell lines, and partly induced by SP1. CRNDE knockdown attenuated OS cell proliferation and invasion and induced apoptosis and G0/G1 arrest. Moreover, the expression of mesenchymal markers N-cadherin, Vimentin and Snail were downregulated, while the expression of epithelial markers E-cadherin and ZO-1 were conversely upregulated due to CRNDE knockdown. The mechanistic investigations showed that CRNDE promoted glycogen synthase kinase-3β phosphorylation to activate the Wnt/β-catenin pathway. The results suggested that lncRNA CRNDE indeed contributed to OS proliferation, invasion, and epithelial-mesenchymal transition, working as an oncogene, demonstrating that lncRNA CRNDE may be a valid therapeutic target for the OS.  相似文献   

11.
12.
miR-363-3p is downregulated in lung adenocarcinoma and can inhibit tumor growth. Here, we aimed to investigate the effect of miR-363-3p on non-small-cell lung cancer (NSCLC) metastasis. In our study, miR-363-3p overexpression inhibited cell migration and invasion via epithelial–mesenchymal transition inhibition, while miR-363-3p knockdown exhibited the opposite effects. Further studies demonstrated that miR-363-3p bound to 3′-untranslated regions of NEDD9 and SOX4, and negatively regulated their levels. Interestingly, NEDD9 or SOX4 knockdown rescued the metastasis-promoting effects of antagomiR-363-3p. The inhibitory effects of agomiR-363-3p were also blocked by NEDD9 or SOX4 overexpression. Moreover, lentivirus particles carrying pre-miR-363 (LV-pre-miR-363) significantly decreased, while LV-miR-363-3p inhibitor increased metastatic nodule numbers and the levels of NEDD9 and SOX4 in lungs. In conclusion, tumor suppressor miR-363-3p may be a potential target in NSCLC therapy.  相似文献   

13.
Papillary thyroid carcinoma (PTC) is the most common type of thyroid malignancy, with growing incidence every year. microRNAs (miRs) are known to regulate the physiological and pathological processes of cancers, such as proliferation, migration, invasion, survival, and epithelial-mesenchymal transition (EMT). Herein, this study aimed to investigate the effect of miR-539 on cell proliferation, apoptosis, and EMT by targeting secretory leukocyte protease inhibitor (SLPI) via the transforming growth factor β1 (TGF-β1)/Smads signaling pathway in PTC. First, PTC-related differentially expressed genes and regulatory miR were screened using bioinformatics analysis, dual luciferase reporter gene assay, and ribonucleoprotein immunoprecipitation, which identified the SLPI gene and the regulatory miR-539 for this study. We identified SLPI as a highly expressed gene in PTC tissues, and SLPI was targeted and negatively regulated by miR-539. Then, we introduced a series of miR-539 mimics, miR-539 inhibitors, and small interfering RNA against SLPI plasmids into CGTHW-3 cells to examine the effects of miR-539 and SLPI on the expression of TGF-β1/Smads signaling pathway-, EMT-, and apoptosis-related factors, as well as cell proliferation, migration, invasion, and apoptosis. The obtained results indicated that CGTHW-3 cells treated with silenced SLPI or overexpressed miR-539 suppressed the cell proliferation, migration, invasion abilities, and resistance to apoptosis of PTC cells, corresponding to increased expression of Bcl-2-associated X protein, TGF-β1, Sekelsky mothers against dpp 4, and epithelial cadherin, and decreased B cell lymphoma 2, Vimentin, and N-cadherin. Altogether, we concluded that overexpressed miR-539 could inhibit the PTC cell proliferation and promote apoptosis and EMT by targeting SPLI via activation of the TGF-β1/Smads signaling pathway.  相似文献   

14.
15.

Breast cancer is a highly heterogeneous group of human cancer with distinct genetic, biological and clinicopathological features. Triple-negative breast cancer (TNBC) is the most aggressive and metastatic type of breast cancer and associated with poor patient survival. However, the role of UV Radiation Resistance-Associated Gene (UVRAG) in TNBC remains unknown. Here, we report that UVRAG is highly upregulated in all TNBC cells and its knockdown leads to the inhibition of cell proliferation, colony formation and progression of cell cycle, which is associated with and reduced expression of cell cycle related protein expression, including Cyclin A2, B1, D1, cdc2 and cdk6 in TNBC cells. Inhibition of UVRAG also suppressed cell motility, migration and invasion of TNBC cells by inhibition of Integrin β1 and β3 and Src activity. Our findings suggest for the first time that UVRAG expression contributes to proliferation, cell cycle progression, motility/migration and invasion of TNBC cells. Thus, targeting UVRAG could be a potential strategy in breast cancer especially against TNBC.

  相似文献   

16.
Zheng  Yan  Xie  Lei  Xu  Shuwen  Yan  Weidong  Zhang  Hongzhen  Meng  Yali  Liu  Jingqiao  Wei  Xujing 《Molecular and cellular biochemistry》2021,476(11):4031-4044
Molecular and Cellular Biochemistry - To explore the mechanism of miR-202-5p targeting the expression of PIK3CA and mediating the activation of PI3K/Akt/mTOR signaling pathway on the proliferation,...  相似文献   

17.
We developed Wnt/β-catenin inhibitors by identifying 13 number of 3-arylethynyl-substituted pyrido[2,3,-b]pyrazine derivatives that were able to inhibit the Wnt/β-catenin signal pathway and cancer cell proliferation. In the optimization process, a series of 2,3,6-trisubstituted pyrido[2,3,-b]pyrazine core skeletons showed were shown to higher activity than 2,3,6-trisubstituted quinoxaline's and thus hold promise for use as potential small-molecule inhibitors of the Wnt/β-catenin signal pathway in non-small-cell lung cancer cell (NSCLC) lines. And we have studied the pharmacophore mapping for compound 954, which presented the highest activity with a fit value of 2.81. The pharmacophore mapping for the compounds including 954, pyrido[2,3,-b]pyrazine core had hydrogen-bond acceptor site and hydrophobic center roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号