首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BMSCs)已被广泛应用于治疗脊髓损伤,但目前对其治疗机制了解甚少。BMSCs被移植至脊髓钳夹损伤模型大鼠,以研究其保护作用。通过LFB(Luxol fast blue)染色、锇酸染色、TUNEL(Td T-mediated d UTP nick-end labeling)染色和透射电镜对白质有髓神经纤维进行观察。免疫印迹检测BMSCs移植对脑源性神经营养因子(Brain derived neurotrophic factor,BDNF)和caspase 3蛋白表达的影响。通过脊髓损伤后1、7、14 d三个时间点移植BMSCs并进行后肢运动评分(Basso,beattie and bresnahan;BBB评分)和CNPase(2′,3′-cyclic-nucleotide 3′-phosphodiesterase)、髓鞘碱性蛋白(Myelin basic protein,MBP)、caspase 3蛋白水平的检测。免疫荧光观察BMSCs移植到受损脊髓后分化情况及CNPase-caspase 3~+共表达情况。骨髓间充质干细胞移植7 d后,部分移植的BMSCs可表达神经元和少突胶质细胞标记物,大鼠后肢运动能力和髓鞘超微结构特征均明显改善。骨髓间充质干细胞移植后BDNF蛋白表达水平增加,caspase 3蛋白表达水平则降低。相对于脊髓损伤后1 d和14 d,7 d移植BMSCs后MBP和CNPase蛋白表达水平最高;caspase 3蛋白表达水平则最低。骨髓间充质干细胞移植后CNPase-caspase 3~+细胞散在分布于脊髓白质。结果表明,急性脊髓损伤后,BMSCs移植到受损脊髓有分化为神经元和少突胶质细胞的倾向,并促进BDNF的分泌介导抗少突胶质细胞凋亡而对神经脱髓鞘病变有保护作用,且最佳移植时间为脊髓损伤后7 d。  相似文献   

3.
Spinal cord injury induces scar formation causes axonal damage that leads to the degeneration of axonal function. Still, there is no robust conceptual design to regenerate the damaged axon after spinal injury. Therefore, the present study demonstrates that human gingival derived neuronal stem cells (GNSCs) transplants in the injectable caffeic acid bioconjugated hydrogel (CBGH) helps to bridge the cavity and promote the engraftment and repopulation of transplants in the injured spinal tissue. Our study reports that the bioluminescence imaging in vivo imaging system (IVIS) provides a satisfactory progression in CBGH-GNSCs transplants compare to lesion control and CBGH alone. Immune regulators interleukin-6 (IL-6), tumor necrosis factor-α, neutrophil elastase are decreased, IL-10 is increased. Likewise, immunostaining (TAU/TUJ-1, SOX-2/NeuN, MAP-2/PSD93, NSE, S100b, and GFAP) shown repopulated cells. Also, TRA-1-81 expression confirms the absence of immune rejection in the CBGH-GNSCs transplants. However, locomotor recovery test, gene (IL-6, CASPASE3, p14-ARF, VEGF, LCAM, BDNF, NT3, NGN2, TrKc, FGF2, Sox-2, TUJ-1, MAP-2, Nestin, and NeuN) and protein expression (TAU, TUJ-1, SOX-2 MAP-2, PSD93, NeuN, TRA-1-81, GFAP, TAU, and MBP) shows functional improvements in the CBGH-GNSCs group. Further, GABA and glutamine level demonstrates the new synaptic vesicle formation. Hence, the CBGH scaffold enhances GNSCs transplants to restore the injured spinal tissue.  相似文献   

4.
5.
6.
Sun Y  Shi J  Fu SL  Lu PH  Xu XM 《生理学报》2003,55(3):349-354
将胚胎神经干细胞(neural stem cells,NSCs)移植至成年大鼠损伤的脊髓,观察移植后NSCs的存活、迁移以及损伤后的功能恢复。实验结果显示:动物NSCs移植4周后,斜板实验平均角度和运动评分结果比对照组均有明显增高(P<0.05),而脊髓损伤(spinal cord injury,SCI)处的空洞面积显著减小(P<0.05);在NSCs中加入胶质细胞源性的神经营养因子(glial cell line-derived neurotrophic factor,GDNF)后,上述改变更加显著。移植后的NSCs不仅能存活,而且向损伤的头端和尾端迁移达3mm之远。这些结果表明,移植的NSCs不仅可以存活、迁移,还可减小SCI空洞面积,促进动物神经功能的恢复;此外,我们的结果还表明GDNF对SCI功能恢复有促进作用。  相似文献   

7.
The application of growth factors (GFs) for treating chronic spinal cord injury (SCI) has been shown to promote axonal regeneration and functional recovery. However, direct administration of GFs is limited by their rapid degradation and dilution at the injured sites. Moreover, SCI recovery is a multifactorial process that requires multiple GFs to participate in tissue regeneration. Based on these facts, controlled delivery of multiple growth factors (GFs) to lesion areas is becoming an attractive strategy for repairing SCI. Presently, we developed a GFs‐based delivery system (called GFs‐HP) that consisted of basic fibroblast growth factor (bFGF), nerve growth factor (NGF) and heparin‐poloxamer (HP) hydrogel through self‐assembly mode. This GFs‐HP was a kind of thermosensitive hydrogel that was suitable for orthotopic administration in vivo. Meanwhile, a 3D porous structure of this hydrogel is commonly used to load large amounts of GFs. After single injection of GFs‐HP into the lesioned spinal cord, the sustained release of NGF and bFGF from HP could significantly improve neuronal survival, axon regeneration, reactive astrogliosis suppression and locomotor recovery, when compared with the treatment of free GFs or HP. Moreover, we also revealed that these neuroprotective and neuroregenerative effects of GFs‐HP were likely through activating the phosphatidylinositol 3 kinase and protein kinase B (PI3K/Akt) and mitogen‐activated protein kinase/extracellular signal‐regulated kinase (MAPK/ERK) signalling pathways. Overall, our work will provide an effective therapeutic strategy for SCI repair.  相似文献   

8.
A large number of treatment approaches have been used for spinal cord injury improvement, a medically incurable disorder, and subsequently stem cell transplantation appears to be a promising strategy. The main objective of this study is to ascertain whether combinational therapy of human neural stem cells (hNSCs) together with lithium chloride improves cell survival, proliferation, and differentiation in a rat spinal contusion model, or not. Contusive spinal cord injury was implemented on Wistar male rats. Experimental groups comprised of: control, hNSCs transplanted, lithium chloride (Li), and hNSCs and lithium chloride (hNSCs + Li). In every experimental group, locomotor activity score and motor evoked potential (MEP) were performed to evaluate motor recovery as well as histological assessments to determine mechanisms of improvement. In accordance with our results, the hNSCs + Li and the Li groups showed significant improvement in locomotor scores and MEP. Also, Histological assessments revealed that transplanted hNSCs are capable of differentiation and migration along the spinal cord. Although NESTIN-positive cells were proliferated significantly in the Lithium group in comparison with control and the hNSCs + Li groups, the quantity of ED1 cells in the hNSCs + Li was significantly larger than the other two groups. Our results demonstrate that combinational therapy of hNSCs with lithium chloride and lithium chloride individually are adequate for ameliorating more than partial functional recovery and endogenous repair in spinal cord-injured rats.  相似文献   

9.
脊髓损伤(SCI)由于复杂病理生理和神经修复再生困难,至今仍旧是难以攻克的医学难题,而干细胞因其神经再生和神经保护特性被认为是治疗SCI最有希望的方法。其中人脐带间充质干细胞(HUC-MSCs)近年培养分化方法不断改进、神经修复机制初步阐明,联合移植等综合治疗方案也不断实践,使HUC-MSCs移植治疗效果提高。另外关于HUC-MSCs治疗SCI的临床试验逐渐开展,术后患者神经功能恢复改善且无严重并发症出现,表明干细胞移植应用于人体是安全有效的。本文就HUC-MSCs治疗SCI的研究状况及进展进行综述。  相似文献   

10.
This study aims to examine whether miR-31 promotes endogenous NSC proliferation and be used for spinal cord injury management. In the present study, the morpholino knockdown of miR-31 induced abnormal neuronal apoptosis in zebrafish, resulting in impaired development of the tail. miR-31 agomir transfection in NSCs increased Nestin expression and decreased ChAT and GFAP expression levels. miR-31 induced the proliferation of mouse NSCs by upregulating the Notch signaling pathway, and more NSCs entered G1; Notch was inhibited by miR-31 inactivation. Injection of a miR-31 agomir into mouse models of spinal cord injury could effectively restore motor functions after spinal cord injury, which was achieved by promoting the proliferation of endogenous NSCs. After the injection of a miR-31 agomir in spinal cord injury mice, the expression of Nestin and GFAP increased, while GFAP expression decreased. In conclusion, the zebrafish experiments prove that a lack of miR-31 will block nervous system development. In spinal cord injury mouse models, miR-31 overexpression might promote spinal cord injury repair.  相似文献   

11.
Murine embryonic stem cells were induced to differentiate into neural lineage cells by exposure to retinoic acid. Approximately one million cells were transplanted into the lesion site in the spinal cords of adult rats which had received moderate contusion injuries 9 days previously. One group received transplants of cells genetically modified to over-express bcl-2, which codes for an anti-apoptotic protein. A second group received transplants of the wild-type ES cells from which the bcl-2 line was developed. In the untransplanted control group, only medium was injected. Locomotor abilities were assessed using the Basso, Beattie and Bresnahan (BBB) rating scale for 6 weeks. There was no incremental locomotor improvement in either transplant group when compared to control over the survival period. Morbidity and mortality were significantly more prevalent in the transplant groups than in controls. At the conclusion of the 6-week survival period, the spinal cords were examined. Two of six cords from the bcl-2 group and one of 12 cords from the wild-type group showed gross evidence of abnormal growths at the site of transplantation. No similar growth was seen in the control. Pathological examination of the abnormal cords showed very large numbers of undifferentiated cells proliferating at the injection site and extending up to 1.5?cm rostrally and caudally. These results suggest that transplanting KD3 ES cells, or apoptosis-resistant cells derived from the KD3 line, into the injured spinal cord does not improve locomotor recovery and can lead to tumor-like growth of cells, accompanied by increased debilitation, morbidity and mortality.  相似文献   

12.
目的:观察转染Netrin-1基因的真皮多能干细胞(dMSCs)移植对大鼠脊髓损伤的修复作用。方法:取大鼠真皮组织,分离培养真皮多能干细胞,经转染Netrin-1基因和诱导,观察细胞形态变化,免疫细胞化学方法对分化细胞进行鉴定。Wistar大鼠在L4水平制成脊髓全横断损伤模型,伤处移植大鼠真皮多能干细胞或者转染Netrin-1基因的真皮多能干细胞。对大鼠进行动物行为学(BBB)评分和对损伤脊髓进行组织学检测。结果:转染Netrin-1基因的dMSCs诱导产生的神经元样细胞占总细胞数的比例为24.45±3.73%,而单独的真皮多能干细胞诱导产生的神经元样细胞占总细胞数的比例10.50±2.13%,二者差异显著(P<0.05)。BBB评分显示转染Netrin-1基因的dMSCs移植组明显高于单纯dMSCs移植组和空白对照组(P<0.05);转染Netrin-1基因的dMSCs移植组损伤脊髓结构的修复明显优于单纯dMSCs移植组和空白对照组。结论:转染Netrin-1基因的真皮多能干细胞移植较单纯dMSCs移植对大鼠脊髓损伤有更好的治疗作用。  相似文献   

13.
14.
15.
《Developmental cell》2023,58(3):239-255.e10
  1. Download : Download high-res image (214KB)
  2. Download : Download full-size image
  相似文献   

16.
Spinal cord injury (SCI), as a severe disease with no effective therapeutic measures, has always been a hot topic for scientists. Bone morphogenetic protein 7 (BMP7), as a multifunctional cytokine, has been reported to exert protective effects on the nervous system. The present study aimed to investigate the neuroprotective effect and the potential mechanisms of BMP7 on rats that suffered SCI. Rat models of SCI were established by the modified Allen's method. Adeno-associated virus (AAV) was injected at T9 immediately before SCI to overexpress BMP7. Results showed that the expression of BMP7 decreased in the injured spinal cords that were at the same time demyelinated. AAV-BMP7 partly reversed oligodendrocyte (OL) loss, and it was beneficial to maintain the normal structure of myelin. The intervention group showed an increase in the number of axons and Basso-Beattie-Bresnahan scores. Moreover, double-labelled immunofluorescence images indicated p-Smad1/5/9 and p-STAT3 in OLs induced by BMP7 might be involved in the protective effects of BMP7. These findings suggest that BMP7 may be a feasible therapy for SCI to reduce demyelination and promote functional recovery.  相似文献   

17.
18.
Although the central nervous system is considered a comparatively static tissue with limited cell turnover, cells with stem cell properties have been isolated from most neural tissues. The spinal cord ependymal cells show neural stem cell potential in vitro and in vivo in injured spinal cord. However, very little is known regarding the ependymal niche in the mouse spinal cord. We previously reported that a secreted factor, chick Akhirin, is expressed in the ciliary marginal zone of the eye, where it works as a heterophilic cell‐adhesion molecule. Here, we describe a new crucial function for mouse Akhirin (M‐AKH) in regulating the proliferation and differentiation of progenitors in the mouse spinal cord. During embryonic spinal cord development, M‐AKH is transiently expressed in the central canal ependymal cells, which possess latent neural stem cell properties. Targeted inactivation of the AKH gene in mice causes a reduction in the size of the spinal cord and decreases BrdU incorporation in the spinal cord. Remarkably, the expression patterns of ependymal niche molecules in AKH knockout (AKH?/?) mice are different from those of AKH+/+, both in vitro and in vivo. Furthermore, we provide evidence that AKH expression in the central canal is rapidly upregulated in the injured spinal cord. Taken together, these results indicate that M‐AKH plays a crucial role in mouse spinal cord formation by regulating the ependymal niche in the central canal. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 494–504, 2015  相似文献   

19.
20.
This study was conducted to characterize canine bone marrow-derived mesenchymal stem cells (BMSCs); in vivo tracking in mice, and therapeutic evaluation in canine clinical paraplegia cases. Canine BMSCs were isolated, cultured, and characterized in vitro as per International Society for Cellular Therapy criteria, and successfully differentiated to chondrogenic, osteogenic, and adipogenic lineages. To demonstrate the homing property, the pGL4.51 vector that contained luciferase reporter gene was used to transfect BMSCs. Successfully transfected cells were injected around the skin wound in mice and in vivo imaging was done at 6, 12 and 24 hr post MSCs delivery. In vivo imaging revealed that transfected BMSCs migrated and concentrated predominantly toward the center of the wound. BMSCs were further evaluated for allogenic therapeutic potential in 44 clinical cases of spinal cord injuries (SCI) and compared with conventional therapy (control). Therapeutic potential as evaluated by different body reflexes and recovery score depicted significantly better results in stem cell-treated group compared to control group. In conclusion, allogenic canine BMSCs can serve as potent therapeutic candidate in cell-based therapies, especially for diseases like SCI, where the conventional medication is not so promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号