共查询到8条相似文献,搜索用时 0 毫秒
1.
2.
Saeidi N Guo X Hutcheon AE Sander EA Bale SS Melotti SA Zieske JD Trinkaus-Randall V Ruberti JW 《Biotechnology and bioengineering》2012,109(10):2683-2698
Many tissue engineering applications require the remodeling of a degradable scaffold either in vitro or in situ. Although inefficient remodeling or failure to fully remodel the temporary matrix can result in a poor clinical outcome, very few investigations have examined in detail, the interaction of regenerative cells with temporary scaffoldings. In a recent series of investigations, randomly oriented collagen gels were directly implanted into human corneal pockets and followed for 24 months. The resulting remodeling response exhibited a high degree of variability which likely reflects differing regenerative/synthetic capacity across patients. Given this variability, we hypothesize that a disorganized, degradable provisional scaffold could be disruptive to a uniform, organized reconstruction of stromal matrix. In this investigation, two established corneal stroma tissue engineering culture systems (collagen scaffold‐based and scaffold‐free) were compared to determine if the presence of the disorganized collagen gel influenced matrix production and organizational control exerted by primary human corneal fibroblast cells (PHCFCs). PHCFCs were cultured on thin disorganized reconstituted collagen substrate (RCS—five donors: average age 34.4) or on a bare polycarbonate membrane (five donors: average age 32.4 controls). The organization and morphology of the two culture systems were compared over the long‐term at 4, 8, and 11/12 weeks. Construct thickness and extracellular matrix organization/alignment was tracked optically with bright field and differential interference contrast (DIC) microscopy. The details of cell/matrix morphology and cell/matrix interaction were examined with standard transmission, cuprolinic blue and quick‐freeze/deep‐etch electron microscopy. Both the scaffold‐free and the collagen‐based scaffold cultures produced organized arrays of collagen fibrils. However, at all time points, the amount of organized cell‐derived matrix in the scaffold‐based constructs was significantly lower than that produced by scaffold‐free constructs (controls). We also observed significant variability in the remodeling of RCS scaffold by PHCFCs. PHCFCs which penetrated the RCS scaffold did exert robust local control over secreted collagen but did not appear to globally reorganize the scaffold effectively in the time period of the study. Consistent with our hypothesis, the results demonstrate that the presence of the scaffold appears to interfere with the global organization of the cell‐derived matrix. The production of highly organized local matrix by fibroblasts which penetrated the scaffold suggests that there is a mechanism which operates close to the cell membrane capable of controlling fibril organization. Nonetheless, the local control of the collagen alignment produced by cells within the scaffold was not continuous and did not result in overall global organization of the construct. Using a disorganized scaffold as a guide to produce highly organized tissue has the potential to delay the production of useful matrix or prevent uniform remodeling. The results of this study may shed light on the recent attempts to use disorganized collagenous matrix as a temporary corneal replacement in vivo which led to a variable remodeling response. Biotechnol. Bioeng. 2012; 109: 2683–2698. © 2012 Wiley Periodicals, Inc. 相似文献
3.
Adriano Spreafico Federico Chellini Bruno Frediani Giulia Bernardini Silvia Niccolini Tommaso Serchi Giulia Collodel Alessandro Paffetti Vittorio Fossombroni Mauro Galeazzi Roberto Marcolongo Annalisa Santucci 《Journal of cellular biochemistry》2009,108(5):1153-1165
The aim of the present study was to demonstrate the mitogenic and differentiating properties of platelet‐rich plasma releasates (PRPr) on human chondrocytes in mono‐ and three‐dimensional cultures. In order to assess if PRPr supplementation could maintain the chondrocyte phenotype or at least inhibit the cell de‐differentiation even after several days in culture, we performed a proteomic study on several cell cultures independently grown, for different periods of time, in culture medium with FCS, human serum (HS), and releasates obtained from PRP and platelet‐poor plasma (PPP). We found that PRP treatment actually induced in chondrocytes the expression of proteins (some of which novel) involved in differentiation. J. Cell. Biochem. 108: 1153–1165, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
4.
5.
Poly‐vinyl alcohol and nonmulberry tasar silk fibroin of Antheraea mylitta are blended to fabricate nanofibrous scaffolds for bone regeneration. Nanofibrous matrices are prepared by electrospinning the equal volume ratio blends of silk fibroin (2 and 4 wt%) with poly‐vinyl alcohol solution (10 wt%) and designated as 2SF/PVA and 4SF/PVA, respectively with average nanofiber diameters of 177 ± 13 nm (2SF/PVA) and 193 ± 17 nm (4SF/PVA). Fourier transform infrared spectroscopy confirms retention of the secondary structure of fibroin in blends indicating the structural stability of neo‐matrix. Both thermal stability and contact angle of the blends decrease with increasing fibroin percentage. Conversely, fibroin imparts mechanical stability to the blends; greater tensile strength is observed with increasing fibroin concentration. Blended scaffolds are biodegradable and support well the neo‐bone matrix synthesis by human osteoblast like cells. The findings indicate the potentiality of nanofibrous scaffolds of nonmulberry fibroin as bone scaffolding material. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 271–284, 2015. 相似文献
6.
Zein/HA fibrous membranes were successfully prepared by electrospinning the zein/HA solution mixed by magnetic stirrer (Method I) or ultrasonic power (Method Ⅱ). The morphology of zeirdHA nanocomposite fibers and the distribution of HA within the fibers electrospun by two methods were researched by Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX). In Method I, the distribution of HA nanoparticles is not homogeneous and HA particles tend to agglom- erate. The relatively homogeneous HA distribution can be observed in the membranes electrospun by Method Ⅱ. Using mag- netic stirrer to prepare the electrospinning solution improves the wettability of zein/HA membranes. From the viewpoint of application, electrospun zein/HA membranes fabricated by the solution mixed via Methods I and II both possessed reasonable tensile strength and elongation at break for both handling and sterilization. Considering two aspects of strength and elongation, electrospun zein/HA membranes fabricated by Method I are more balanced than those fabricated by Method Ⅱ. Biological performances of the control zein and zein/HA membranes were assessed by in vitro culture of hMSCs. Results show that both types of the membranes can support cell proliferation. The cells cultured on the zein/HA membranes electrospun by Method I with 5 wt% HA (on weight ofzein) show significantly higher proliferation than those cultured on the control zein membranes on the seventh day. The electrospun zein/HA fibrous membranes show promises for bone tissue engineering applications. 相似文献
7.
For tissue engineering applications, the preparation of biodegradable and biocompatible scaffolds is the most desirable but challenging task. Among the various fabrication methods, electrospinning is the most attractive one due to its simplicity and versatility. Additionally, electrospun nanofibers mimic the size of natural extracellular matrix ensuring additional support for cell survival and growth. This study showed the viability of the fabrication of long fibers spanning a larger deposit area for a novel biodegradable and biocompatible polymer named poly(glycerol-dodecanoate) (PGD)1 by using a newly designed collector for electrospinning. PGD exhibits unique elastic properties with similar mechanical properties to nerve tissues, thus it is suitable for neural tissue engineering applications. The synthesis and fabrication set-up for making fibrous scaffolding materials was simple, highly reproducible, and inexpensive. In biocompatibility testing, cells derived from mouse embryonic stem cells could adhere to and grow on the electrospun PGD fibers. In summary, this protocol provided a versatile fabrication method for making PGD electrospun fibers to support the growth of mouse embryonic stem cell derived neural lineage cells. 相似文献