首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Checkpoint 1 (Chk1), as an important member of DNA replication checkpoint and DNA damage response, has an important role during the G2/M stage of mitosis. In this study, we used porcine oocyte as a model to investigate the function of Chk1 during porcine oocyte maturation. Chk1 was expressed from germinal vesicle (GV) to metaphase II (MII) stages, mainly localized in the cytoplasm at GV stage and moved to the spindle after germinal vesicle breakdown (GVBD). Chk1 depletion not only induced oocytes to be arrested at MI stage with abnormal chromosomes arrangement, but also inhibited the degradation of Cyclin B1 and decreased the expression of Mitotic Arrest Deficient 2-Like 1 (Mad2L1), one of spindle assembly checkpoint (SAC) proteins, and cadherin 1 (Cdh1), one of coactivation for anaphase-promoting complex/cyclosome (APC/C). Moreover, Chk1 overexpression delayed GVBD. These results demonstrated that Chk1 facilitated the timely degradation of Cyclin B1 at anaphase I (AI) and maintained the expression of Mad2L1 and Cdh1, which ensured that all chromosomes were accurately located in a line, and then oocytes passed metaphase I (MI) and AI and exited from the first meiotic division successfully. In addition, we proved that Chk1 had not function on GVBD of porcine oocytes, which suggested that maturation of porcine oocytes did not need the DNA damage checkpoint, which was different from the mouse oocyte maturation.  相似文献   

3.
During oocyte meiotic maturation, meiotic spindles form in the central cytoplasm and then migrate to the cortex to extrude a small polar body, forming a highly polarized cell through a process involving actin and actin-related molecules. The mechanisms underlying oocyte polarization are still unclear. The Arp2/3 complex regulates oocyte polarization but it is not known whether the WASP family of proteins, a known regulator of the Arp2/3 complex, is involved in this context. In the present study, the role of WASP family member WAVE2 in mouse oocyte asymmetric division was investigated. (1) WAVE2 mRNA and protein were detected during mouse oocyte meiosis. (2) siRNA-mediated and antibody-mediated disruption of WAVE2 resulted in the failure of chromosome congression, spindle formation, spindle positioning and polar body extrusion. (3) WAVE2 regulated actin-driven chromosome migration since chromosomes were arrested in the central cytoplasm by WAVE2 RNAi in the absence of microtubules. (4) Localization of γ-tubulin and MAPK was disrupted after RNAi, confirming the effect of WAVE2 on spindle formation. (5) Actin cap and cortical granule-free domain (CGFD) formation was also disrupted, further confirming the failure of oocyte polarization. Our data suggest that WAVE2 regulates oocyte polarization by regulating meiotic spindle, peripheral positioning, probably via an actin-mediated pathway, and is involved in polar body emission during mouse oocyte meiotic maturation.  相似文献   

4.
Sumoylation is an important posttranslational modification in which SUMO (small ubiquitin-related modifier) proteins are bonded covalently to their substrates. Studies on the roles of sumoylation in cell cycle regulation have been emerging in both mitosis from yeast to mammals and meiosis in budding yeast, but the functions of sumoylation in mammalian meiosis, especially in oocyte meiotic maturation are not well known. Here, we examined the localization and expression of SUMO-1 and SUMO-2/3, the two basic proteins in the sumoylation pathway and investigated their roles through overexpression of Senp2 during mouse oocyte maturation. Immunofluorescent staining revealed differential patterns of SUMO-1 and SUMO-2/3 localization: SUMO-1 was localized to the spindle poles in prometaphase I, MI and MII stages, around the separating homologues in anaphase I and telophase I stages of first meiosis, while SUMO-2/3 was mainly concentrated near centromeres during mouse oocyte maturation. Immunoblot analysis uncovered the different expression profiles of SUMO-1 and SUMO-2/3 modified proteins during mouse oocyte maturation. Overexpression of Senp2, a SUMO-specific isopeptidase, caused changes of SUMO-modified proteins and led to defects in MII spindle organization in mature eggs. These results suggest that the SUMO pathway may play an indispensable role during mouse oocyte meiotic maturation.Key words: sumoylation, mouse oocyte maturation, overexpression, Senp2, MII spindle  相似文献   

5.
RING box protein-1 (RBX1) is an essential component of Skp1-cullin-F-box protein (SCF) E3 ubiquitin ligase and participates in diverse cellular processes by targeting various substrates for degradation. However, the physiological function of RBX1 in mouse oocyte maturation remains unknown. Here, we examined the expression, localization and function of RBX1 during mouse oocyte meiotic maturation. Immunofluorescence analysis showed that RBX1 displayed dynamic distribution during the maturation process: it localized around and migrated along with the spindle and condensed chromosomes. Rbx1 knockdown with the appropriate siRNAs led to a decreased rate of first polar body extrusion and most oocytes were arrested at metaphase I. Moreover, downregulation of Rbx1 caused accumulation of Emi1, an inhibitor of the anaphase-promoting complex/cyclosome (APC/C), which is required for mouse meiotic maturation. In addition, we found apparently increased expression of the homologue disjunction-associated protein securin and cyclin B1, which are substrates of APC/C E3 ligase and need to be degraded for meiotic progression. These results indicate the essential role of the SCFβTrCP-EMI1-APC/C axis in mouse oocyte meiotic maturation. In conclusion, we provide evidence for the indispensable role of RBX1 in mouse oocyte meiotic maturation.  相似文献   

6.
7.
Optimization of culture conditions is important to improve oocyte maturation and subsequent embryo development. In particular, this study analyzed the effects of increasing concentrations of PIO in the maturation medium on spindle formation and chromosome alignment, glutathione, and intracellular ROS levels and expression of selected genes related to maternal markers, apoptosis, and lipid metabolism. The percentage of oocytes displaying normal spindle formation and chromosome alignment was higher in the 1 µM PIO (1 PIO)‐treated group than in the control group. The glutathione level was significantly higher in the 1 PIO‐treated group than in the control group, while the reactive oxygen species level did not differ. Expression of maternal marker (MOS and GDF9), antiapoptotic (BIRC5), and lipid metabolism‐related (ACADS, CPT2, SREBF1, and PPARG) genes was higher in the 1 PIO‐treated group than in the control group, while expression of a proapoptotic gene (CASP3) was lower. The blastocyst formation rate and the percentage of blastocysts that reached at least the hatching stage on Days 6 and 7, and the percentage of blastocysts containing more than 128 cells were significantly higher in the 1 PIO‐treated group than in the control group. These results indicate that PIO treatment during in vitro maturation improves porcine oocyte maturation and subsequent parthenogenetic embryo development mainly by enhancing lipid metabolism and antioxidant defense in oocytes.  相似文献   

8.
Advanced maternal age has been reported to impair oocyte quality; however, the underlying mechanisms remain to be explored. In the present study, we identified the lowered NAD+ content and decreased expression of NMNAT2 protein in oocytes from old mice. Specific depletion of NMNAT2 in mouse oocytes disturbs the meiotic apparatus assembly and metabolic activity. Of note, nicotinic acid supplementation during in vitro culture or forced expression of NMNAT2 in aged oocytes was capable of reducing the reactive oxygen species (ROS) production and incidence of spindle/chromosome defects. Moreover, we revealed that activation or overexpression of SIRT1 not only partly prevents the deficient phenotypes of aged oocytes but also ameliorates the meiotic anomalies and oxidative stress in NMNAT2‐depleted oocytes. To sum up, our data indicate a role for NMNAT2 in controlling redox homeostasis during oocyte maturation and uncover that NMNAT2‐ NAD+‐SIRT1 is an important pathway mediating the effects of maternal age on oocyte developmental competence.  相似文献   

9.
Mammalian cyclin A1 is prominently expressed in testis and essential for meiosis in the male mouse, however, it shows weak expression in ovary, especially during oocyte maturation. To understand why cyclin A1 behaves in this way in the oocyte, we investigated the effect of cyclin A1 overexpression on mouse oocyte meiotic maturation. Our results revealed that cyclin A1 overexpression triggered meiotic resumption even in the presence of germinal vesicle breakdown inhibitor, milrinone. Nevertheless, the cyclin A1-overexpressed oocytes failed to extrude the first polar body but were completely arrested at metaphase I. Consequently, cyclin A1 overexpression destroyed the spindle morphology and chromosome alignment by inducing premature separation of chromosomes and sister chromatids. Therefore, cyclin A1 overexpression will prevent oocyte maturation although it can promote meiotic resumption. All these results show that decreased expression of cyclin A1 in oocytes may have an evolutional significance to keep long-lasting prophase arrest and orderly chromosome separation during oocyte meiotic maturation.  相似文献   

10.
ObjectivesHistone deacetylase 8 (HDAC8) is one of the class I HDAC family proteins, which participates in the neuronal disorders, parasitic/viral infections, tumorigenesis and many other biological processes. However, its potential function during female germ cell development has not yet been fully understood.Materials and methodsHDAC8‐targeting siRNA was microinjected into GV oocytes to deplete HDAC8. PCI‐34051 was used to inhibit the enzyme activity of HDAC8. Immunostaining, immunoblotting and fluorescence intensity quantification were applied to assess the effects of HDAC8 depletion or inhibition on the oocyte meiotic maturation, spindle/chromosome structure, γ‐tubulin dynamics and acetylation level of α‐tubulin.ResultsWe observed that HDAC8 was localized in the nucleus at GV stage and then translocated to the spindle apparatus from GVBD to M II stages in porcine oocytes. Depletion of HDAC8 led to the oocyte meiotic failure by showing the reduced polar body extrusion rate. In addition, depletion of HDAC8 resulted in aberrant spindle morphologies and misaligned chromosomes due to the defective recruitment of γ‐tubulin to the spindle poles. Notably, these meiotic defects were photocopied by inhibition of HDAC8 activity using its specific inhibitor PCI‐34051. However, inhibition of HDAC8 did not affect microtubule stability as assessed by the acetylation level of α‐tubulin.ConclusionsCollectively, our findings demonstrate that HDAC8 acts as a regulator of spindle assembly during porcine oocyte meiotic maturation.  相似文献   

11.
The Ska (spindle and kinetochore-associated) complex is composed of three proteins: Ska1, Ska2 and Ska3. It is required for stabilizing kinetochore-microtubule (KT-MT) interactions and silencing spindle checkpoint during mitosis. However, its roles in meiosis remain unclear. The present study was designed to investigate the localization and function of the Ska complex during mouse oocyte meiotic maturation. Our results showed that the localization and function of Ska complex in mouse oocyte meiosis differ in part from those in mitosis. Injection of low dose exogenous Myc-Ska mRNA showed that, instead of localizing to the kinetochores (KTs) and mediating KT-MT interactions from pro-metaphase to mid-anaphase stages as in mitosis, the members of the Ska complex were only localized on spindle microtubules from the Pro-MI to MII stages in mouse oocyte meiosis. Time-lapse live imaging analysis showed that knockdown of any member of the Ska complex by Morpholino injection into mouse oocytes resulted in spindle movement defects and enlarged polar bodies. Depletion of the whole Ska complex disrupted the stability of the anaphase spindle and influenced the extrusion of the first polar body. Taken together, these results show that the Ska complex plays an important role in meiotic spindle migration and anaphase spindle stability during mouse oocyte maturation.  相似文献   

12.
Saccharomyces cerevisiae BUB1 encodes a protein kinase required for spindle assembly checkpoint function. In the presence of spindle damage, BUB1 is required to prevent cell cycle progression into anaphase. We have identified a dominantly acting BUB1 allele that appears to activate the spindle assembly checkpoint pathway in cells with undamaged spindles. High-level expression of BUB1-5 did not cause detectable spindle damage, yet it delayed yeast cells in mitosis at a stage following bipolar spindle assembly but prior to anaphase spindle elongation. Delayed cells possessed a G2 DNA content and elevated Clb2p mitotic cyclin levels. Unlike cells delayed in mitosis by spindle damage or MPS1 kinase overexpression, hyperphosphorylated forms of the Mad1p checkpoint protein did not accumulate. Similar to cells overexpressing MPS1, the BUB1-5 delay was dependent upon the functions of the other checkpoint genes, including BUB2 and BUB3 and MAD1, MAD2, and MAD3. We found that the mitotic delay caused by BUB1-5 or MPS1 overexpression was interdependent upon the function of the other. This suggests that the Bub1p and Mps1p kinases act together at an early step in generating the spindle damage signal.  相似文献   

13.
Spindly was first identified in Drosophila; its homologues are termed SPDL-1 in Caenorhabditis elegans and Hs Spindly/hSpindly in humans. In all species, Spindly and its homologues function by recruiting dynein to kinetochores and silencing SAC in mitosis of somatic cells. Depletion of Spindly causes an extensive metaphase arrest during somatic mitoses in Drosophila, C. elegans and humans. In Drosophila, Spindly is required for shedding of Rod and Mad2 from the kinetochores in metaphase; in C. elegans, SPDL-1 presides over the recruitment of dynein and MDF-1 to the kinetochores; in humans, Hs Spindly is required for recruiting both dynein and dynactin to kinetochores but it is dispensable for removal of checkpoint proteins from kinetochores. The present study was designed to investigate the localization and function of the Spindly homologue (mSpindly) during mouse oocyte meiotic maturation by immunofluorescent analysis, and by overexpression and knockdown of mSpindly. We found that mSpindly was typically localized to kinetochores when chromatin condensed into chromosomes after GVBD. In metaphase of both first meiosis and second meiosis, mSpindly was localized not only to kinetochores but also to the spindle poles. Overexpression of mSpindly did not affect meiotic progression, but its depletion resulted in an arrest of the pro-MI/MI stage, failure of anaphase entry and subsequent polar body emission, and in abnormal spindle morphology and misaligned chromosomes. Our data suggest that mSpindly participates in SAC silencing and in spindle formation as a recruiter and/or a transporter of kinetochore proteins in mouse oocytes, but that it needs to cooperate with other factors to fulfill its function.  相似文献   

14.
Oogenesis in the urochordate, Oikopleura dioica, occurs in a large coenocyst in which vitellogenesis precedes oocyte selection in order to adapt oocyte production to nutrient conditions. The animal has expanded Cyclin-Dependant Kinase 1 (CDK1) and Cyclin B paralog complements, with several expressed during oogenesis. Here, we addressed functional redundancy and specialization of CDK1 and cyclin B paralogs during oogenesis and early embryogenesis through spatiotemporal analyses and knockdown assays. CDK1a translocated from organizing centres (OCs) to selected meiotic nuclei at the beginning of the P4 phase of oogenesis, and its knockdown impaired vitellogenesis, nurse nuclear dumping, and entry of nurse nuclei into apoptosis. CDK1d-Cyclin Ba translocated from OCs to selected meiotic nuclei in P4, drove meiosis resumption and promoted nuclear envelope breakdown (NEBD). CDK1d-Cyclin Ba was also involved in histone H3S28 phosphorylation on centromeres and meiotic spindle assembly through regulating Aurora B localization to centromeres during prometaphase I. In other studied species, Cyclin B3 commonly promotes anaphase entry, but we found O. dioica Cyclin B3a to be non-essential for anaphase entry during oogenic meiosis. Instead, Cyclin B3a contributed to meiotic spindle assembly though its loss could be compensated by Cyclin Ba.  相似文献   

15.
Aurora-A is a serine/threonine protein kinase that plays important regulatory roles during mitotic cell cycle progression. In this study, Aurora-A expression, subcellular localization, and possible functions during porcine oocyte meiotic maturation, fertilization and early embryonic cleavage were studied by using Western blot, confocal microscopy and drug treatments. The quantity of Aurora-A protein remained stable during porcine oocyte meiotic maturation. Confocal microscopy revealed that Aurora-A distributed abundantly in the nucleus at the germinal vesicle stage. After germinal vesicle breakdown, Aurora-A concentrated around the condensed chromosomes and the metaphase I spindle, and finally, Aurora-A was associated with spindle poles during the formation of the metaphase II spindle. Aurora-A concentrated in the pronuclei in fertilized eggs. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. In conclusion, Aurora-A may be a multifunctional kinase that plays pivotal regulatory roles in microtubule assembly during porcine oocyte meiotic maturation, fertilization and early embryonic mitosis.  相似文献   

16.
Xtr in the fertilized eggs of Xenopus has been demonstrated to be a member of a messenger ribonucleoprotein (mRNP) complex that plays a crucial role in karyokinesis during cleavage. Since the Xtr is also present both in oocytes and spermatocytes and its amount increases immediately after spematogenic cells enter into the meiotic phase, this protein was also predicted to act during meiotic progression. Taking advantage of Xenopus oocytes' large size to microinject anti-Xtr antibody into them for inhibition of Xtr function, we examined the role of Xtr in meiotic progression of oocytes. Microinjection of anti-Xtr antibody into immature oocytes followed by reinitiation of oocyte maturation did not affect germinal vesicle break down and the oscillation of Cdc2/cyclin B activity during meiotic progression but caused abnormal spindle formation and chromosomal alignment at meiotic metaphase I and II. Immunoprecipitation of Xtr showed the association of Xtr with FRGY2 and mRNAs such as RCC1 and XL-INCENP mRNAs, which are involved in the progression of karyokinesis. When anti-Xtr antibody was injected into oocytes, translation of XL-INCENP mRNA, which is known to be repressed in immature oocytes and induced after reinitiation of oocyte maturation, was inhibited even if the oocytes were treated with progesterone. A similar translational regulation was observed in oocytes injected with a reporter mRNA, which was composed of an enhanced green fluorescent protein open reading frame followed by the 3' untranslational region (3'UTR) of XL-INCENP mRNA. These results indicate that Xtr regulates the translation of XL-INCENP mRNA through its 3'UTR during meiotic progression of oocyte.  相似文献   

17.

Background

Kinesin superfamily proteins are microtubule-based molecular motors essential for the intracellular transport of various cargos, including organelles, proteins, and RNAs. However, their exact roles during mammalian oocyte meiosis have not been fully clarified.

Results

Herein, we investigated the critical events during porcine oocyte meiotic maturation with the treatment of Eg5-specific inhibitor monastrol. We found that Eg5 inhibition resulted in oocyte meiotic failure by displaying the poor expansion of cumulus cells and reduced rate of polar body extrusion. In the meantime, the spindle assembly and chromosome alignment were compromised, accompanied by the decreased level of acetylated α-tubulin, indicative of less stable microtubules. Impaired actin dynamics and mitochondria integrity were also observed in Eg5-inhibited oocytes. Additionally, inhibition of Eg5 caused the abnormal distribution of cortical granules and ovastacin, a cortical granule component, potentially leading to the fertilization failure.

Conclusions

Our findings reveal that Eg5 possesses an important function in porcine oocyte meiotic progression by regulating the organelle dynamics and arrangement.
  相似文献   

18.
Bisphenol A (BPA), a synthetic additive used to harden polycarbonate plastics and epoxy resin, is ubiquitous in our everyday environment. Many studies have indicated detrimental effects of BPA on the mammalian reproductive abilities. This study is aimed to test the potential effects of BPA on methylation of imprinted genes during oocyte growth and meiotic maturation in CD-1 mice. Our results demonstrated that BPA exposure resulted in hypomethylation of imprinted gene Igf2r and Peg3 during oocyte growth, and enhanced estrogen receptor (ER) expression at the levels of mRNA and protein. The relationship between ER expression and imprinted gene hypomethylation was substantiated using an ER inhibitor, ICI182780. In addition, BPA promoted the primordial to primary follicle transition, thereby speeding up the depletion of the primordial follicle pool, and suppressed the meiotic maturation of oocytes because of abnormal spindle assembling in meiosis I. In conclusion, neonatal exposure to BPA inhibits methylation of imprinted genes during oogenesis via the ER signaling pathway in CD-1 mice.  相似文献   

19.
The inhibitor Y-27632 is a specific selective inhibitor of Rho-associated protein kinases (ROCKs), which are downstream effectors of Rho guanosine triphosphatease (GTPases) and regulate Rho-associated cellular functions, including actin cytoskeletal organization. Little is known regarding the effects of Y-27632 on mammalian oocyte maturation. In the present study, we investigated the effects of Y-27632 on porcine oocyte meiosis and possible regulatory mechanisms of ROCK during porcine oocyte maturation. We found that ROCK accumulated not only at spindles, but also at the cortex in porcine oocytes. Y-27632 treatment reduced ROCK expression, and inhibited porcine oocyte meiotic maturation, which might be because of the impairment of actin expression and actin-related spindle positioning. Y-27632 treatment also disrupted the formation of actin cap and cortical granule-free domain, which further confirmed a spindle positioning failure. Thus, Y-27632 has significant effects on the meiotic competence of mammalian oocytes by reducing ROCK expression, and the regulation is related to its effects on actin-mediated spindle positioning.  相似文献   

20.
Regulation of mRNA translation by cytoplasmic polyadenylation is known to be important for oocyte maturation and further development. This process is generally controlled by phosphorylation of cytoplasmic polyadenylation element binding protein 1 (CPEB1). The aim of this study is to determine the role of Aurora kinase A in CPEB1 phosphorylation and the consequent CPEB1-dependent polyadenylation of maternal mRNAs during mammalian oocyte meiosis. For this purpose, we specifically inhibited Aurora kinase A with MLN8237 during meiotic maturation of porcine oocytes. Using poly(A)-test PCR method, we monitored the effect of Aurora kinase A inhibition on poly(A)-tail extension of long and short cyclin B1 encoding mRNAs as markers of CPEB1-dependent cytoplasmic polyadenylation. Our results show that inhibition of Aurora kinase A activity impairs neither cyclin B1 mRNA polyadenylation nor its translation and that Aurora kinase A is unlikely to be involved in CPEB1 activating phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号