首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat shock protein 90 (Hsp90) is a molecular chaperone involved in folding and stabilizing multiple intracellular proteins that have roles in cell activation and proliferation. Many Hsp90 client proteins in tumor cells are mutated or overexpressed oncogenic proteins driving cancer cell growth, leading to the acceptance of Hsp90 as a potential therapeutic target for cancer. Because several signal transduction molecules that are dependent on Hsp90 function are also involved in activation of innate and adaptive cells of the immune system, we investigated the mechanism by which inhibiting Hsp90 leads to therapeutic efficacy in rodent models of inflammation and autoimmunity. EC144, a synthetic Hsp90 inhibitor, blocked LPS-induced TLR4 signaling in RAW 264.7 cells by inhibiting activation of ERK1/2, MEK1/2, JNK, and p38 MAPK but not NF-κB. Ex vivo LPS-stimulated CD11b(+) peritoneal exudate cells from EC144-treated mice were blocked from phosphorylating tumor progression locus 2, MEK1/2, and ERK1/2. Consequently, EC144-treated mice were resistant to LPS administration and had suppressed systemic TNF-α release. Inhibiting Hsp90 also blocked in vitro CD4(+) T cell proliferation in mouse and human MLRs. In vivo, semitherapeutic administration of EC144 blocked disease development in rat collagen-induced arthritis by suppressing the inflammatory response. In a mouse collagen-induced arthritis model, EC144 also suppressed disease development, which correlated with a suppressed Ag-specific Ab response and a block in activation of Ag-specific CD4(+) T cells. Our results describe mechanisms by which blocking Hsp90 function may be applicable to treatment of autoimmune diseases involving inflammation and activation of the adaptive immune response.  相似文献   

2.
Hepatic function is of great concern in metabolic and immunological homeostasis. Traditionally, medical management to liver damage may benefit from phytomedicine, such as Chinese herbs. In southern China, Polygonum perfoliatum L can contribute to alleviating pathological symptoms of liver disease, such as hepatitis. However, bioactive compounds of hepatoprotection in this herb are still less to be investigated. In this study, clinical data of patients with drug-induced liver injury were collected on the basis of serological analyses. In addition, we extracted and identified total flavonoids from Polygonum perfoliatum L (TFPPL) before implementing biochemical experiments in vivo. In human data, the blood contents of liver function enzymes were visibly elevated, and the percentage of immune cells were abnormally changed. The data from the animal study showed that TFPPL-treated carbon tetrachloride-exposed mice resulted in reduced absolute liver mass and lowered blood levels of liver functional enzymes (alanine transaminase and aspartate transaminase). In enzyme-linked immunosorbent assay, the comparable data indicated that serological tumor necrosis factor α (TNF-α), interleukin 6, and heat shock protein 90 (Hsp90) contents were reduced in TFPPL-treated mice. In histopathological observations, TFPPL-treated mice exhibited reduced hepatocellular Hsp90, TNF-α, nuclear factor κ-light-chain-enhancer of activated B cells-p65 positive cells, and lowered Bax and caspase-3-labeled cells in the livers. Further, intrasplenic integrin β1, 5′-nucleotidase, and antigen KI-67 positive cells were increased after TFPPL treatments. Taken together, our present findings demonstrate that herb-extracted TFPPL exert potential hepatoprotective activities against chemical-induced liver damage in mice, possibly through the pharmacological mechanisms of inhibiting inflammatory stress and apoptosis, inactivating Hsp90 bioactivity in the liver, and improving splenic immunocompetence.  相似文献   

3.
Inflammation contributes to liver injury in acetaminophen (APAP) hepatotoxicity in mice and is triggered by stimulation of immune cells. The purinergic receptor P2X7 is upstream of the nod-like receptor family, pryin domain containing-3 (NLRP3) inflammasome in immune cells and is activated by ATP and NAD that serve as damage-associated molecular patterns. APAP hepatotoxicity was assessed in mice genetically deficient in P2X7, the key inflammatory receptor for nucleotides (P2X7-/-), and in wild-type mice. P2X7-/- mice had significantly decreased APAP-induced liver necrosis. In addition, APAP-poisoned mice were treated with the specific P2X7 antagonist A438079 or etheno-NAD, a competitive antagonist of NAD. Pre- or posttreatment with A438079 significantly decreased APAP-induced necrosis and hemorrhage in APAP liver injury in wild-type but not P2X7-/- mice. Pretreatment with etheno-NAD also significantly decreased APAP-induced necrosis and hemorrhage in APAP liver injury. In addition, APAP toxicity in mice lacking the plasma membrane ecto-NTPDase CD39 (CD39-/-) that metabolizes ATP was examined in parallel with the use of soluble apyrase to deplete extracellular ATP in wild-type mice. CD39-/- mice had increased APAP-induced hemorrhage and mortality, whereas apyrase also decreased APAP-induced mortality. Kupffer cells were treated with extracellular ATP to assess P2X7-dependent inflammasome activation. P2X7 was required for ATP-stimulated IL-1β release. In conclusion, P2X7 and exposure to the ligands ATP and NAD are required for manifestations of APAP-induced hepatotoxicity.  相似文献   

4.
对乙酰氨基酚诱导的小鼠药物性肝损伤的模型研究   总被引:1,自引:0,他引:1  
改良对乙酰氨基酚(acetaminophen,APAP)单独诱导小鼠急性肝损伤的模型和致死模型。随机将小鼠分为4组:空白对照组、APAP3h组、APAP6h组和APAP12h组,每组5只。饥饿15h后用对乙酰氨基酚诱发小鼠肝损伤。测定各组血清ALT、AST及胆红素含量,HE染色观察各组肝组织损伤情况。观察生存率时,小鼠随机分为对照组、禁食+APAP(500mg/kg)组、禁食+APAP(300mg/kg)组和不禁食+APAP(500mg/kg)组,四组同时给药,然后记录各组小鼠的生存情况,绘制四组小鼠的生存曲线。小鼠注射APAP后,随时间的延长,ALT、AST水平逐渐升高,均明显高于空白对照组(P〈0.05)。小鼠肝脏HE染色可见,APAP中毒组小鼠肝细胞坏死及炎性细胞浸润。禁食+APAP(500mg/kg)组小鼠自16h开始出现死亡,72h时全部死亡,死亡率明显高于不禁食组和禁食+APAP(300mg/kg)组小鼠。该研究对APAPI起的C57/BL6小鼠药物性肝损伤模型进行改良,使其更加稳定和便于研究,为进一步探究APAP诱导肝毒性的机制及防治措施奠定了基础。  相似文献   

5.
Previously, we reported that the major stress-inducible heat shock protein 70 (Hsp70) acts as a recognition structure for natural killer (NK) cells, if localized on the cell surface of tumor cells. Incubation of purified NK cells with low-dose interleukin (IL)-2 (100 IU/mL) plus recombinant Hsp70-protein or the immunogenic 14-mer Hsp70-peptide TKDNNLLGRFELSG450-463, termed TKD (2 microg/mL), enhances the cytolytic activity against Hsp70 membrane-positive (CX+) but not against Hsp70-negative (CX-) tumor cells. Here, we show that the cytolytic activity against Hsp70-positive tumor cells is inducible by incubation of unseparated peripheral blood mononuclear cells (PBMNC) with low-dose IL-2 plus TKD. Cell sorting experiments revealed that within the PBMNC population CD94(+)/CD3(-) NK cells, and not CD94(-)/CD3(+) T cells, mediate the cytotoxic activity against Hsp70-positive tumor cells. The antitumoral effect of PBMNC stimulated either with IL-2 plus TKD or with IL-2 alone was assessed in tumor-bearing severe combined immunodeficiency/beige mice. A single intravenous (iv) injection of 40 x 10(6) IL-2 plus TKD-stimulated PBMNC (containing 5.2 x 10(6) NK cells) on day 4 results in a 60% reduction in tumor size, from 3.89 g to 1.56 g. In contrast, the adoptive transfer of the identical amount PBMNC stimulated with low-dose IL-2 only (containing 4.4 x 10(8) NK cells) reduces the tumor size only less than 10% (3.64 g). A phenotypic characterization of the excised tumors revealed that predominantly Hsp70-positive tumor cells were eliminated by TKD-activated PBMNC. Kinetic studies demonstrate that the in vivo cytolytic capacity of TKD-stimulated PBMNC is dependent on the effector to target cell ratio. An iv injection of effector cells on day 1 or 2 after tumor cell inoculation results in significantly smaller tumors (0.77 g or 0.89 g) on day 21 as compared with mice that were immunoreconstituted on day 4 or 8 (1.39 g or 2.23 g). The tumor size of nonimmunoreconstituted control animals was 3.55 g.  相似文献   

6.
Deregulated accumulation of hypoxia-inducible factor-1α (HIF-1α) is a hallmark of many solid tumors. Directly targeting HIF-1α for therapeutics is challenging. Our finding that HIF-1α regulates secretion of heat shock protein-90α (Hsp90α) for cell migration raises the exciting possibility that targeting the secreted Hsp90α from HIF-1α-positive tumors has a better clinical outlook. Using the HIF-1α-positive and metastatic breast cancer cells MDA-MB-231, we show that down-regulation of the deregulated HIF-1α blocks Hsp90α secretion and invasion of the cells. Reintroducing an active, but not an inactive, HIF-1α into endogenous HIF-1α-depleted cells rescues both Hsp90α secretion and invasion. Inhibition of Hsp90α secretion, neutralization of secreted Hsp90α action, or removal of the cell surface LRP-1 receptor for secreted Hsp90α reduces the tumor cell invasion in vitro and lung colonization and tumor formation in nude mice. Furthermore, we localized the tumor-promoting effect to a 115-amino acid region in secreted Hsp90α called F-5. Supplementation with F-5 is sufficient to bypass the blockade of HIF-1α depletion and resumes invasion by the tumor cells under serum-free conditions. Because normal cells do not secrete Hsp90α in the absence of stress, drugs that target F-5 should be more effective and less toxic in treatment of HIF-1α-positive tumors in humans.  相似文献   

7.
8.
Acetaminophen (APAP) is one of the most commonly used drugs for the safe and effective treatment of fever and pain. However, it is a well-established hepatotoxin. The objective of this study was to identify alternation in various genes in liver of mice after administration of low and high doses of APAP. Male C57BL/6J mice received APAP (30 or 300 mg/kg, i.p.). They were sacrificed after 6 hr and 24 hr for assessment of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), total RNA isolation, cDNA microarray analysis and histopathological analysis of liver injury. Low dose of APAP did not cause hepatotoxicity in mice. However, it was toxic at a high dose. Using microarray technology, we selected changed genes more than 1.5 fold. Gene expression changes were recorded even at a low dose treatment with APAP. Six (6) hr after APAP treatment at low dose, 6 genes were up-regulated and 25 genes were down-regulated. However, 24 hr after treatment at low dose 8 genes were up-regulated and 34 genes were down-regulated. 6 hr after of high dose treatment 29 genes were down-regulated and none was up-regulated. A 24 hr treatment with high dose up-regulated 6 genes and down-regulated 18 genes. These expression patterns provide information on high versus low dose mechanisms of APAP toxicity. Gene expression signatures recorded after a nontoxic dose of APAP strongly support the validity of gene expression changes as meaningful markers of hepatotoxicity.  相似文献   

9.
Nitric oxide (NO) is suggested to play a role in liver injury elicited by acetaminophen (APAP). Hepatic microcirculatory dysfunction also is reported to contribute to the development of the injury. As a result, the role of NO in hepatic microcirculatory alterations in response to APAP was examined in mice by in vivo microscopy. A selective inducible NO synthase (iNOS) inhibitor,l-N6-(1-iminoethyl)-lysine (L-NIL), or a nonselective NOS inhibitor, NG-nitro-l-arginine methyl ester (L-NAME), was intraperitoneally administered to animals 10 min before APAP gavage. L-NIL suppressed raised alanine aminotransferase (ALT) values 6 h after APAP, whereas L-NAME increased those 1.7-fold. Increased ALT levels were associated with hepatic expression of iNOS. L-NIL, but not L-NAME, reduced the expression. APAP caused a reduction (20%) in the numbers of perfused sinusoids. L-NIL restored the sinusoidal perfusion, but L-NAME was ineffective. APAP increased the area occupied by infiltrated erythrocytes into the extrasinusoidal space. L-NIL tended to minimize this infiltration, whereas L-NAME further enhanced it. APAP caused an increase (1.5-fold) in Kupffer cell phagocytic activity. This activity in response to APAP was blunted by L-NIL, whereas L-NAME further elevated it. L-NIL suppressed APAP-induced decreases in hepatic glutathione levels. These results suggest that NO derived from iNOS contributes to APAP-induced parenchymal cell injury and hepatic microcirculatory disturbances. L-NIL exerts preventive effects on the liver injury partly by inhibiting APAP bioactivation. In contrast, NO derived from constitutive isoforms of NOS exerts a protective role in liver microcirculation against APAP intoxication and thereby minimizes liver injury.  相似文献   

10.
The HML-1 antigen of intestinal lymphocytes is an activation antigen.   总被引:9,自引:0,他引:9  
The Ag recognized by the mAb HML-1 is expressed on more than 90% of human intestinal intraepithelial lymphocytes, whereas in other lymphoid tissues it is rarely or not expressed. In the present study, we have investigated the percentage of HML-1-positive cells in the human intestinal lamina propria and the coexpression of HML-1 with different T cell subset markers. In addition, we studied the inducibility of HML-1 on PBL which normally are HML-1-negative. Flow cytometric analysis of isolated intestinal lamina propria lymphocytes (LPL) showed that about 40% of the cells expressed HML-1, the majority belonging to the CD8-positive subpopulation. Virtually all LPL expressed CD45RO, whereas the percentage of CD29-positive cells was only about 50%, similar to PBL. There were only few cells expressing CD45RA or Leu-8 in the lamina propria. HML-1-positive cells were almost exclusively CD45RA-negative, but were found in both the CD29-positive and the CD29-negative subpopulation of LPL. In vitro stimulation of PBL showed that the expression of HML-1 was inducible on T cells by mitogens, phorbolester, Ag, and rIL-2. Expression of HML-1 was induced with a different time course and with differences in the response to the investigated stimuli compared with CD25. Activated HML-1-positive PBL were also predominantly CD45RA-negative. The findings show that HML-1 is an Ag, which is expressed in vivo on a specific subset of previously activated T cells in the unique environment of the intestinal mucosa, and which can be induced in vitro by different activation signals on PBL.  相似文献   

11.
Hsp90 interacts with proteins that mediate signaling pathways involved in the regulation of essential processes such as proliferation, cell cycle control, angiogenesis and apoptosis. Hsp90 inhibition is therefore an attractive strategy for blocking abnormal pathways that are crucial for cancer cell growth. In the present study, the role of Hsp90 in human breast cancer MCF-7 cells was examined by stably silencing Hsp90 gene expression with an Hsp90-silencing vector (Hsp90-shRNA). RT-PCR and Western blot analyses showed that Hsp90-shRNA specifically and markedly down-regulated Hsp90 mRNA and protein expression. NF-kB and Akt protein levels were down-regulated in Hsp90-shRNA transfected cells, indicating that Hsp90 knockout caused a reduction of survival factors and induced apoptosis. Treatment with Hsp90-shRNA significantly increased apoptotic cell death and caused cell cycle arrest in the G1/S phase in MCF-7 cells, as shown by flow cytometry. Silencing of Hsp90 also reduced cell viability, as determined by MTT assay. In vivo experiments showed that MCF-7 cells stably transfected with Hsp90-shRNA grew slowly in nude mice as compared with control groups. In summary, the Hsp90-shRNA specifically silenced the Hsp90 gene, and inhibited MCF-7 cell growth in vitro and in vivo. Possible molecular mechanisms underlying the effects of Hsp90-shRNA include the degradation of Hsp90 breast cancer-related client proteins, the inhibition of survival signals and the upregulation of apoptotic pathways. shRNA-mediated interference may have potential therapeutic utility in human breast cancer.  相似文献   

12.
Efrapeptins (EF), a family of fungal peptides, inhibit proteasomal enzymatic activities and the in vitro and in vivo growth of HT-29 cells. They are also known inhibitors of F1F0-ATPase, a mitochondrial enzyme that functions as an Hsp90 co-chaperone. We have previously shown that treatment of cancer cells with EF results in disruption of the Hsp90:F1F0-ATPase complex and inhibition of Hsp90 chaperone activity. The present study examines the effect of EF on breast cancer growth in vitro and in vivo. As a monotherapy, EF inhibited cell proliferation in vitro with an IC50 value ranging from 6 nM to 3.4 μM. Inhibition of Hsp90 chaperone function appeared to be the dominant mechanism of action and the factor determining cellular sensitivity to EF. In vitro inhibition of proteasome became prominent in the absence of adequate levels of Hsp90 and F1F0-ATPase as in the case of the relatively EF-resistant MDA-MB-231 cell line. In vivo, EF inhibited MCF-7 and MDA-MB-231 xenograft growth with a maximal inhibition of 60% after administration of 0.15 and 0.3 mg/kg EF, respectively. 2-Deoxyglucose (2DG), a known inhibitor of glycolysis, acted synergistically with EF in vitro and antagonistically in vivo. In vitro, the synergistic effect was attributed to a prolonged endoplasmic reticulum (ER) stress. In vivo, the antagonistic effect was ascribed to the downregulation of tumoral and/or stromal F1F0-ATPase by 2DG.  相似文献   

13.
Type 2 diabetes mellitus (T2DM) features insulin resistance, hyperglycemia, dyslipidemia, overproduction of inflammatory cytokines, and systemic oxidative stress. Here, heat shock proteins Hsp70 and Hsp 90, adiponectin, and heme oxygenase-1 (HO-1, Hsp32) are profiled in peripheral blood mononuclear cells (PBMC) and serum from 25 T2DM patients and 25 healthy control subjects. Cells cultured with phorbol 12-myristate 13-acetate/ionomycin were evaluated by three-color flow cytometry for immunophenotypic biomarkers. Plasma HO-1, Hsp, and adiponectin levels were assayed by enzyme-linked immunosorbent assay (ELISA). Relative to healthy controls, T2DM patients exhibited significantly elevated plasma Hsp70, and representation of T helper immunophenotypes activated to express inflammatory cytokines, including CD4+ IFN-γ+, CD4+ TNF-α+, CD4+ IL-6+, CD4+ IL-1β+ T cells, significantly lower representation of CD4+ IL-10+ T cells, plasma adiponectin and cell-associated HO-1 expression—with no significant differences in plasma Hsp90 between T2DM and healthy controls. Plasma HO-1 and adiponectin in T2DM patients inversely correlated with TNF-α and showed inverse correlation between serum LDL and plasma HO-1. Moreover, TNF-α and Hsp90 in T2DM patients correlated positively with fasting blood glucose (FBG). These results demonstrate correlation between potentially pathogenic T cells, HO-1, and adiponectin, additionally revealing a T helper (Th)1-related character of T2DM immunopathogenesis, suggesting potential for novel T cell-related management strategies for T2DM and related co-morbidities.  相似文献   

14.
During acetaminophen (APAP) hepatotoxicity, increased expression of multidrug resistance-associated proteins 2, 3, and 4 (Mrp2-4) occurs. Mrp4 is the most significantly upregulated transporter in mouse liver following APAP treatment. Although the expression profiles of liver transporters following APAP hepatotoxicity are well characterized, the regulatory mechanisms contributing to these changes remain unknown. We hypothesized that Kupffer cell-derived mediators participate in the regulation of hepatic transporters during APAP toxicity. To investigate this, C57BL/6J mice were pretreated with clodronate liposomes (0.1 ml iv) to deplete Kupffer cells and then challenged with APAP (500 mg/kg ip). Liver injury was assessed by plasma alanine aminotransferase and hepatic transporter protein expression was determined by Western blot and immunohistochemistry. Depletion of Kupffer cells by liposomal clodronate increased susceptibility to APAP hepatotoxicity. Although increased expression of several efflux transporters was observed after APAP exposure, only Mrp4 was found to be differentially regulated following Kupffer cell depletion. At 48 and 72 h after APAP dosing, Mrp4 levels were increased by 10- and 33-fold, respectively, in mice receiving empty liposomes. Immunohistochemistry revealed Mrp4 staining confined to centrilobular hepatocytes. Remarkably, Kupffer cell depletion completely prevented Mrp4 induction by APAP. Elevated plasma levels of TNF-alpha and IL-1beta were also prevented by Kupffer cell depletion. These findings show that Kupffer cells protect the liver from APAP toxicity and that Kupffer cell mediators released in response to APAP are likely responsible for the induction of Mrp4.  相似文献   

15.
Previously we described an involvement of the C-type lectin receptor CD94 and the neuronal adhesion molecule CD56 in the interaction of natural killer (NK) cells with Hsp70-protein and Hsp70-peptide TKD. Therefore, differences in the cell surface density of these NK cell-specific markers were investigated comparatively in CD94-sorted, primary NK cells and in established NK cell lines NK-92, NKL, and YT after TKD stimulation. Initially, all NK cell types were positive for CD94; the CD56 expression varied. After stimulation with TKD, the mean fluorescence intensity (mfi) of CD94 and CD56 was upregulated selectively in primary NK cells but not in NK cell lines. Other cell surface markers including natural cytotoxicity receptors remained unaffected in all cell types. CD3-enriched T cells neither expressing CD94 nor CD56 served as a negative control. High receptor densities of CD94/CD56 were associated with an increased cytolytic response against Hsp70 membrane-positive tumor target cells. The major histocompatibility complex (MHC) class I-negative, Hsp70-positive target cell line K562 was efficiently lysed by primary NK cells and to a lower extent by NK lines NK-92 and NKL. YT and CD3-positive T cells were unable to kill K562 cells. MHC class-I and Hsp70-positive, Cx + tumor target cells were efficiently lysed only by CD94-sorted, TKD-stimulated NK cells with high CD94/CD56 mfi values. Hsp70-specificity was demonstrated by antibody blocking assays, comparative phenotyping of the tumor target cells, and by correlating the amount of membrane-bound Hsp70 with the sensitivity to lysis. Remarkably, a 14-mer peptide (LKD), exhibiting only 1 amino acid exchange at position 1 (T to L), neither stimulated Hsp70-reactivity nor resulted in an upregulated CD94 expression on primary NK cells. Taken together our findings indicate that an MHC class I-independent, Hsp70 reactivity could be associated with elevated cell surface densities of CD94 and CD56 after TKD stimulation.  相似文献   

16.
Bortezomib, a proteasome inhibitor, is a chemotherapeutic drug that is commonly used to treat a variety of human cancers. The antitumor effects of bortezomib-induced tumor cell immunogenicity have not been fully delineated. In this study, we examined the generation of immune-mediated antitumor effects in response to treatment by bortezomib in a murine ovarian tumor model. We observed that tumor-bearing mice that were treated with bortezomib had CD8(+) T cell-mediated inhibition of tumor growth. Furthermore, the comparison of tumor cell-based vaccines that were produced from tumor cells treated or untreated with bortezomib showed vaccination with drug-treated tumor cell-based vaccines elicited potent tumor-specific CD8(+) T cell immune response with improved therapeutic antitumor effect in tumor-bearing mice. Conversely, the untreated tumor cell-based vaccines led to no appreciable antitumor response. Treatment of tumor cells with bortezomib led to the upregulation of Hsp60 and Hsp90 on the cell surface and promoted their phagocytosis by dendritic cells (DCs). However, cell surface expression of Hsp60, instead of Hsp90, is the more important determinant of whether bortezomib-treated tumor cells can generate tumor-specific CD8(+) T cells. CD11c(+) DCs that were treated with bortezomib in vitro had enhanced phagocytic activities. In addition, CD11c(+) DCs from bortezomib-treated tumor-bearing mice had increased maturation. At lower concentrations, bortezomib had no inhibitory effects on T cell proliferation. Taken together, our data indicate that bortezomib can render tumor cells immunogenic by upregulating the cell surface expression of heat shock protein 60 and heat shock protein 90, as well as improve DC function, which results in potent immune-mediated antitumor effects.  相似文献   

17.
Background aims. Acute liver failure (ALF), although rare, remains a rapidly progressive and frequently fatal condition. Acetaminophen (APAP) poisoning induces a massive hepatic necrosis and often leads to death as a result of cerebral edema. Cell-based therapies are currently being investigated for liver injuries. We evaluated the therapeutic potential of transplantation of bone marrow mononuclear cells (BMC) in a mouse model of acute liver injury. Methods. ALF was induced in C57Bl/6 mice submitted to an alcoholic diet followed by fasting and injection of APAP. Mice were transplanted with 10(7) BMC obtained from enhanced green fluorescent protein (GFP) transgenic mice. Results. BMC transplantation caused a significant reduction in APAP-induced mortality. However, no significant differences in serum aminotransferase concentrations, extension of liver necrosis, number of inflammatory cells and levels of cytokines in the liver were found when BMC- and saline-injected groups were compared. Moreover, recruitment of transplanted cells to the liver was very low and no donor-derived hepatocytes were observed. Mice submitted to BMC therapy had some protection against disruption of the blood-brain barrier, despite their hyperammonemia, and serum metalloproteinase (MMP)-9 activity similar to the saline-injected group. Tumor necrosis factor (TNF)-α concentrations were decreased in the serum of BMC-treated mice. This reduction was associated with an early increase in interleukin (IL)-10 mRNA expression in the spleen and bone marrow after BMC treatment. Conclusions. BMC transplantation protects mice submitted to high doses of APAP and is a potential candidate for ALF treatment, probably via an immunomodulatory effect on TNF-α production.  相似文献   

18.
The endotoxin-mediated production of pro-inflammatory cytokines plays an important role in the pathogenesis of liver disorders. Heat shock protein (Hsp70) overexpression has established functions in lipopolysaccharide (LPS)-mediated inflammatory response. However, little is known about the role of Hsp70 activity in LPS signaling. We hypothesized that inhibition of Hsp70 substrate binding activity can ameliorate LPS-induced liver injury by decreasing induction of pro-inflammatory factors. In this study, C57/BL6 mice were injected intraperitoneally with LPS and 2-phenylethynesulfonamide (PES), an inhibitor of Hsp70 substrate binding activity. We found that i. PES prevented LPS-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, infiltration of inflammatory cells, and liver cell apoptosis; ii. PES reduced inducible nitric oxide synthase (iNOS) protein expression as well as serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) content in LPS-stimulated mice; iii. PES reduced the mRNA level of iNOS, TNF-α, and IL-6 in LPS-stimulated liver. iiii. PES attenuated the degradation of inhibitor of κB-α (IκB-α) as well as the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB) in LPS-stimulated liver. Similar changes in the protein expression of inflammatory markers, IκB-α degradation, and NF-κB phosphorylation and nuclear translocation were observed in RAW 264.7 cells. Further mechanistic studies revealed that PES remarkably reduced the elevation of [Ca2+]i and intracellular pH value (pHi) in LPS-stimulated RAW 264.7 cells. Furthermore, PES significantly reduced the increase in Na+/H+ exchanger 1 (NHE1) association to Hsp70 in LPS-stimulated macrophages and liver, suggesting that NHE1-Hsp70 interaction is required for the involvement of NHE1 in the inflammation response. In conclusion, inhibition of Hsp70 substrate binding activity in vivo reduces the induction of pro-inflammatory factors and prevents LPS-induced liver injury likely by disrupting NHE1-Hsp70 interaction which consequently reduces the activation of IκB-α-NF-κB pathway in liver.  相似文献   

19.
Although obstructive jaundice has been associated with a predisposition toward infections, the effects of bile duct ligation (BDL) on bulk intrahepatic T cells have not been clearly defined. The aim of this study was to determine the consequences of BDL on liver T cell phenotype and function. After BDL in mice, we found that bulk liver T cells were less responsive to allogeneic or syngeneic Ag-loaded dendritic cells. Spleen T cell function was not affected, and the viability of liver T cells was preserved. BDL expanded the number of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg), which were anergic to direct CD3 stimulation and mediated T cell suppression in vitro. Adoptively transferred CD4(+)CD25(-) T cells were converted into Treg within the liver after BDL. In vivo depletion of Treg after BDL restored bulk liver T cell function but exacerbated the degrees of inflammatory cytokine production, cholestasis, and hepatic fibrosis. Thus, BDL expands liver Treg, which reduce the function of bulk intrahepatic T cells yet limit liver injury.  相似文献   

20.
In cell extracts all of the nonliganded steroid receptor molecules are found as an oligomeric complex with Hsp90 and other proteins. In previous studies we have shown that Wild-type Hsp90 and progesterone receptor (PR) are located in different cell compartments (Tuohimaa et al. [1993] Proc. Natl. Acad. Sci. USA 90:5848-5852). In the present work we studied whether PR and Hsp90 can efficiently associate provided they are present in the same cell compartment. The association of Hsp90 with PR in vivo was studied by nuclear cotranslocation and immunohistochemistry with an antibody (alphaD) which can distinguish between the oligomeric and dissociated form. Upon expression of a cytoplasmic mutant of PR with Wild-type (cytoplasmic) Hsp90 and Wild-type (nuclear) PR with NLS-Hsp90 (a Hsp90 with a nuclear localization signal), we noted that the epitope of alphaD in PR was exposed in both cases. Also, in vivo crosslinking and treatment of cells with substances which stabilize the oligomeric complex in vitro were inefficient in demonstrating or inducing a similar oligomeric receptor form detectable in vitro in cell homogenates. However, when the cytoplasmic PR mutant (DeltaPR) was coexpressed with a nuclear form of Hsp90 (NLS-Hsp90), a portion of PR was cotranslocated into the nucleus. This would indicate that steroid receptors are indeed associated with Hsp90 in intact cells, but the Hsp90-associated receptor pool represents only a small portion of the receptors. This suggests that the majority of oligomeric complexes seen in cell extracts are formed during cell fractionation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号