首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Focal adhesion kinase (FAK) was first identified as a viral Src (v-Src) substrate, but the role of FAK in Src transformation events remains undefined. We show that stable expression of the FAK C-terminal domain (termed FRNK) in v-Src-transformed NIH 3T3 fibroblasts inhibited cell invasion through Matrigel and blocked experimental metastases in nude mice without effects on cell motility. FRNK inhibitory activity was dependent upon its focal contact localization. FRNK expression disrupted the formation of a v-Src-FAK signaling complex, inhibited p130Cas tyrosine phosphorylation, and attenuated v-Src-stimulated ERK and JNK kinase activation. However, FRNK did not affect v-Src-stimulated Akt activation, cell growth in soft agar, or subcutaneous tumor formation in nude mice. FRNK-expressing cells exhibited decreased matrix metalloproteinase-2 (MMP-2) mRNA levels and MMP-2 secretion. Transient FRNK expression in human 293 cells inhibited exogenous MMP-2 promoter activity and overexpression of wild-type but not catalytically-inactive (Ala-404) MMP-2 rescued v-Src-stimulated Matrigel invasion in the presence of FRNK. Our findings show the importance of FAK in Src-stimulated cell invasion and support a role for Src-FAK signaling associated with elevated tumor cell metastases.  相似文献   

2.
The focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) links transmembrane integrin receptors to intracellular signaling pathways. We show that expression of the FAK-related PTK, Pyk2, is elevated in fibroblasts isolated from murine fak-/- embryos (FAK-) compared with cells from fak+/+ embryos (FAK+). Pyk2 was localized to perinuclear regions in both FAK+ and FAK- cells. Pyk2 tyrosine phosphorylation was enhanced by fibronectin (FN) stimulation of FAK- but not FAK+ cells. Increased Pyk2 tyrosine phosphorylation paralleled the time-course of Grb2 binding to Shc and activation of ERK2 in FAK- cells. Pyk2 in vitro autophosphorylation activity was not enhanced by FN plating of FAK- cells. However, Pyk2 associated with active Src-family PTKs after FN but not poly-L-lysine replating of the FAK- cells. Overexpression of both wild-type (WT) and kinase-inactive (Ala457), but not the autophosphorylation site mutant (Phe402) Pyk2, enhanced endogenous FN-stimulated c-Src in vitro kinase activity in FAK- cells, but only WT Pyk2 overexpression enhanced FN-stimulated activation of co-transfected ERK2. Interestingly, Pyk2 overexpression only weakly augmented FAK- cell migration to FN whereas transient FAK expression promoted FAK- cell migration to FN efficiently compared with FAK+ cells. Significantly, repression of endogenous Src-family PTK activity by p50(csk) overexpression inhibited FN-stimulated cell spreading, Pyk2 tyrosine phosphorylation, Grb2 binding to Shc, and ERK2 activation in the FAK- but not in FAK+ cells. These studies show that Pyk2 and Src-family PTKs combine to promote FN-stimulated signaling events to ERK2 in the absence of FAK, but that these signaling events are not sufficient to overcome the FAK- cell migration defects.  相似文献   

3.
Garcinol, from the fruit rind of Garcinia indica and other species, has been reported to suppress colonic aberrant crypt foci (ACF) formation in rats. In this study, we investigate the beneficial effects of tumor prevention by garcinol on the human colorectal cancer cell line, HT-29. Focal adhesion kinase (FAK) is the major signaling mediator of integrin-mediated cell-matrix contact-regulated cellular proliferation, migration, and apoptosis in adherent cells. Results of Matrigel analysis show that exposure of HT-29 cells to 10 microM garcinol inhibited cell invasion, and decreased the dose-dependent tyrosine phosphorylation of FAK. We further demonstrate by Western blot analysis that garcinol inhibited activation of the Src, MAPK/ERK, and PI3K/Akt signaling pathways. To investigate whether the loss of integrin-mediated cell-matrix contact can induce apoptosis, we demonstrate that garcinol induced it in HT-29 cells. The apoptotic dose of garcinol (20 microM) changed the ratio of the anti-apoptotic Bcl-2 and proapoptotic BAX proteins within 12 h, which correlated with a release of cytochrome c from the mitochondria to the cytosol, and with PARP cleavage. Additionally, we demonstrate that a decreasing MMP-7 protein level in HT-29 cells results in sensitization to garcinol. Garcinol also significantly inhibited the expression of MMP-7 in IL-1beta-induced HT-29 cells. These results suggest that garcinol reduces cell invasion and survival through the inhibition of FAK's downstream signaling.  相似文献   

4.
STC1 is a glycoprotein hormone involved in calcium/phosphate (Pi) homeostasis. There is mounting evidence that STC1 is tightly associated with the development of cancer. But the function of STC1 in cancer is not fully understood. Here, we found that STC1 is down-regulated in Clinical tissues of cervical cancer compared to the adjacent normal cervical tissues (15 cases). Subsequently, the expression of STC1 was knocked down by RNA interference in cervical cancer CaSki cells and the low expression promoted cell growth, migration and invasion. We also found that STC1 overexpression inhibited cell proliferation and invasion of cervical cancer cells. Moreover, STC1 overexpression sensitized CaSki cells to drugs. Further, we showed that NF-κB p65 protein directly bound to STC1 promoter and activated the expression of STC1 in cervical cancer cells. Thus, these results provided evidence that STC1 inhibited cell proliferation and invasion through NF-κB p65 activation in cervical cancer.  相似文献   

5.
6.

Background

Despite effective radiotherapy for the initial stages of cancer, several studies have reported the recurrence of various cancers, including medulloblastoma. Here, we attempt to capitalize on the radiation-induced aggressive behavior of medulloblastoma cells by comparing the extracellular protease activity and the expression pattern of molecules, known to be involved in cell adhesion, migration and invasion, between non-irradiated and irradiated cells.

Methodology/Principal Findings

We identified an increase in invasion and migration of irradiated compared to non-irradiated medulloblastoma cells. RT-PCR analysis confirmed increased expression of uPA, uPAR, focal adhesion kinase (FAK), N-Cadherin and integrin subunits (e.g., α3, α5 and β1) in irradiated cells. Furthermore, we noticed a ∼2-fold increase in tyrosine phosphorylation of FAK in irradiated cells. Immunoprecipitation studies confirmed increased interaction of integrin β1 and FAK in irradiated cells. In addition, our results show that overexpression of uPAR in cancer cells can mimic radiation-induced activation of FAK signaling. Moreover, by inhibiting FAK phosphorylation, we were able to reduce the radiation-induced invasiveness of the cancer cells. In this vein, we studied the effect of siRNA-mediated knockdown of uPAR on cell migration and adhesion in irradiated and non-irradiated medulloblastoma cells. Downregulation of uPAR reduced the radiation-induced adhesion, migration and invasion of the irradiated cells, primarily by inhibiting phosphorylation of FAK, Paxillin and Rac-1/Cdc42. As observed from the immunoprecipitation studies, uPAR knockdown reduced interaction among the focal adhesion molecules, such as FAK, Paxillin and p130Cas, which are known to play key roles in cancer metastasis. Pretreatment with uPAR shRNA expressing construct reduced uPAR and phospho FAK expression levels in pre-established medulloblastoma in nude mice.

Conclusion/Significance

Taken together, our results show that radiation enhances uPAR-mediated FAK signaling and by targeting uPAR we can inhibit radiation-activated cell adhesion and migration both in vitro and in vivo.  相似文献   

7.
8.
Chalcones (benzylideneacetophenone) are cancer-preventive food components found in a human diet rich in fruits and vegetables. In this study, we first report the chemopreventive effect of chalcone in human gastric adenocarcinoma cell lines: AGS. The results showed that chalcone could inhibit the abilities of the adhesion, invasion, and migration by cell–matrix adhesion assay, Boyden chamber invasion/migration assay, and wound-healing assay. Molecular data showed that the effect of chalcone in AGS cells might be mediated via sustained inactivation of the phosphorylation of focal adhesion kinase (FAK) and c-Jun N-terminal kinase 1 and 2 (JNK1/2) signal involved in the downregulation of the expressions of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Next, chalcone-treated AGS cells showed tremendous decrease in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, treating FAK small interfering RNA (FAK siRNA) and specific inhibitor for JNK (SP600125) to AGS cells could reduce the phosphorylation of JNK1/2 and the activity of MMP-2 and MMP-9. Our results revealed that chalcone significantly inhibited the metastatic ability of AGS cells by reducing MMP-2 and MMP-9 expressions concomitantly with a marked reduction on cell invasion and migration through suppressing and JNK signaling pathways. We suggest that chalcone may offer the application in clinical medicine.  相似文献   

9.
We investigated the molecular and cellular actions of receptor protein tyrosine phosphatase (PTP) alpha in integrin signaling using immortalized fibroblasts derived from wild-type and PTP alpha-deficient mouse embryos. Defects in PTP alpha-/- migration in a wound healing assay were associated with altered cell shape and focal adhesion kinase (FAK) phosphorylation. The reduced haptotaxis to fibronectin (FN) of PTP alpha-/- cells was increased by expression of active (but not inactive) PTP alpha. Integrin-mediated formation of src-FAK and fyn-FAK complexes was reduced or abolished in PTP alpha-/- cells on FN, concomitant with markedly reduced phosphorylation of FAK at Tyr397. Reintroduction of active (but not inactive) PTP alpha restored FAK Tyr-397 phosphorylation. FN-induced cytoskeletal rearrangement was retarded in PTP alpha-/- cells, with delayed filamentous actin stress fiber assembly and focal adhesion formation. This mimicked the effects of treating wild-type fibroblasts with the src family protein tyrosine kinase (Src-PTK) inhibitor PP2. These results, together with the reduced src/fyn tyrosine kinase activity in PTP alpha-/- fibroblasts (Ponniah et al., 1999; Su et al., 1999), suggest that PTP alpha functions in integrin signaling and cell migration as an Src-PTK activator. Our paper establishes that PTP alpha is required for early integrin-proximal events, acting upstream of FAK to affect the timely and efficient phosphorylation of FAK Tyr-397.  相似文献   

10.
Focal adhesion kinase (FAK) is a member of a family of non-receptor protein-tyrosine kinases that regulates integrin and growth factor signaling pathways involved in cell migration, proliferation, and survival. FAK expression is increased in many cancers, including breast and prostate cancer. Here we describe perturbation of adhesion-mediated signaling with a FAK inhibitor, PF-573,228. In vitro, this compound inhibited purified recombinant catalytic fragment of FAK with an IC(50) of 4 nM. In cultured cells, PF-573,228 inhibited FAK phosphorylation on Tyr(397) with an IC(50) of 30-100 nM. Treatment of cells with concentrations of PF-573,228 that significantly decreased FAK Tyr(397) phosphorylation failed to inhibit cell growth or induce apoptosis. In contrast, treatment with PF-573,228 inhibited both chemotactic and haptotactic migration concomitant with the inhibition of focal adhesion turnover. These studies show that PF-573,228 serves as a useful tool to dissect the functions of FAK in integrin-dependent signaling pathways in normal and cancer cells and forms the basis for the generation of compounds amenable for preclinical and patient trials.  相似文献   

11.
The tumor suppressor PTEN is a phosphatase with sequence homology to tensin. PTEN dephosphorylates phosphatidylinositol 3,4, 5-trisphosphate (PIP3) and focal adhesion kinase (FAK), and it can inhibit cell growth, invasion, migration, and focal adhesions. We investigated molecular interactions of PTEN and FAK in glioblastoma and breast cancer cells lacking PTEN. The PTEN trapping mutant D92A bound wild-type FAK, requiring FAK autophosphorylation site Tyr397. In PTEN-mutated cancer cells, FAK phosphorylation was retained even in suspension after detachment from extracellular matrix, accompanied by enhanced PI 3-K association with FAK and sustained PI 3-K activity, PIP3 levels, and Akt phosphorylation; expression of exogenous PTEN suppressed all five properties. PTEN-mutated cells were resistant to apoptosis in suspension, but most of the cells entered apoptosis after expression of exogenous PTEN or wortmannin treatment. Moreover, overexpression of FAK in PTEN-transfected cells reversed the decreased FAK phosphorylation and PI 3-K activity, and it partially rescued PIP3 levels, Akt phosphorylation, and PTEN-induced apoptosis. Our results show that FAK Tyr397 is important in PTEN interactions with FAK, that PTEN regulates FAK phosphorylation and molecular associations after detachment from matrix, and that PTEN negatively regulates the extracellular matrix-dependent PI 3-K/Akt cell survival pathway in a process that can include FAK.  相似文献   

12.
Overexpression of Aurora kinase A (AURKA) is frequently observed in various cancers, including laryngeal squamous cell carcinoma (LSCC). We investigated the effects of knockdown of AURKA on laryngeal cancer HEp-2 cells both in vitro and in vivo. A plasmid containing short hairpin (sh)RNA against AURKA was constructed and transfected into HEp-2. Measurements included the CCK-8 assay for viability and proliferation, flow cytometry for apoptosis and effects on the mitotic checkpoint, a trans-well assay for migration, immunofluorescence for assessment of genomic instability, and western blotting for protein expression. AURKA knockdown inhibited proliferation, migration, and colony formation in vitro and tumorigenicity in vivo. The knockdown induced the accumulation of cells in G2-M phase and eventual apoptosis. Knockdown of AURKA caused delayed entry into mitosis after treatment with nocodazole, reduced chromosomal instability, and decreased expression of focal adhesion kinase (FAK), phosphorylated FAK, and matrix metalloproteinase-2 (MMP-2), key regulators in cell adhesion and invasion. Knockdown of AURKA inhibits the growth and invasiveness of this LSCC cell line both in vitro and in vivo. These effects may partially result from the reduced expression of FAK and MMP-2. Knockdown of AURKA expression may represent a promising therapeutic strategy for the treatment of LSCC.  相似文献   

13.
Abstract

Studies on interaction of tumor cells with ECM components showed increased extracellular protease activity mediated by the family of matrix metalloproteinases (MMPs). Here we studied the effect of human prostate adenocarcinoma PC-3 cells–fibronectin (FN) interaction on MMPs and the underlying signaling pathways. Culturing of PC-3 cells on FN-coated surface upregulated MMP-9 and MMP-1. This response is abrogated by the blockade of α5 integrin. siRNA and inhibitor studies indicate possible involvement of phosphatidyl-inositol-3-kinase (PI-3K), focal adhesion kinase (FAK) and nuclear factor-kappaB (NF-κB) in FN-induced upregulation of MMPs. FN treatment also enhanced phosphorylation of FAK, PI3K, protein kinase B (PKB or Akt), nuclear translocation of NF-κB, surface expression of CD-44, and cell migration. Our findings indicate that, binding of PC-3 cells to FN, possibly via α5β1 integrin, induces signaling involving FAK, PI-3K, Akt, NF-κB followed by upregulation of MMP-9 and MMP-1. CD-44 may have role in modulating MMP-9 activity.  相似文献   

14.
Zhu J  Pan X  Zhang Z  Gao J  Zhang L  Chen J 《Cellular signalling》2012,24(6):1323-1332
Integrin-linked kinase (ILK) is a multifunctional serine/threonine kinase in cytoplasm. Recent studies showed that cancer patients with increased ILK expression had low survival, poor prognosis and increased metastasis. Although the causes of ILK overexpression remain to be fully elucidated, accumulating evidence suggests that its oncogenic capacity derives from its regulation of several downstream targets that provide cells with signals that promote proliferation, survival and migration. However, the mechanisms underlying tumor metastasis by ILK is still not fully understood. Epithelial–mesenchymal transition (EMT) is a critical event of cancer cells that triggers invasion and metastasis. We recently reported that knockdown of ILK inhibited the growth and induced apoptosis in human bladder cancer cells. Therefore, we postulate that ILK might involve in EMT. Here we further investigate the function of ILK with RNA interference in bladder cancer cells. Knockdown of ILK impeded an EMT with low Vimentin, Snail, Slug and Twist as well as high E-cadherin expression in vivo and vitro. In addition, we found that knockdown of ILK inhibited cell proliferation, migration and invasion as well as changed cell morphology, adhesion and rearranged cytoskeleton in vitro. We also demonstrated that ILK siRNA inhibited phosphorylation of downstream signaling targets Akt and GSK3β, increased expression of nm23-H1, as well as reduced expression of MMP-2 and MMP-9 in vivo and vitro. Furthermore, downregulation of ILK could increase expression of Ribonuclease inhibitor (RI), an important acidic cytoplasmic protein with many functions. Finally, the effects of ILK siRNA on bladder cancer cell phenotype and invasiveness translate into suppression for tumorigenesis and metastasis in vivo. Taken together, our findings highlight that ILK signaling pathway plays a novel role in the development of bladder cancer through regulating EMT. ILK could be a promising diagnostic marker and therapeutic target for bladder cancer.  相似文献   

15.
Integrin signaling is central to cell growth and differentiation, and critical for the processes of apoptosis, cell migration and wound repair. Previous research has demonstrated a requirement for SNARE-dependent membrane traffic in integrin trafficking, as well as cell adhesion and migration. The goal of the present research was to ascertain whether SNARE-dependent membrane trafficking is required specifically for integrin-mediated signaling. Membrane traffic was inhibited in Chinese hamster ovary cells by expression of dominant-negative (E329Q) N-ethylmaleimide-sensitive fusion protein (NSF) or a truncated form of the SNARE SNAP23. Integrin signaling was monitored as cells were plated on fibronectin under serum-free conditions. E329Q-NSF expression inhibited phosphorylation of focal adhesion kinase (FAK) on Tyr397 at early time points of adhesion. Phosphorylation of FAK on Tyr576, Tyr861 and Tyr925 was also impaired by expression of E329Q-NSF or truncated SNAP23, as was trafficking, localization and activation of Src and its interaction with FAK. Decreased FAK-Src interaction coincided with reduced Rac activation, decreased focal adhesion turnover, reduced Akt phosphorylation and lower phosphatidylinositol 3,4,5-trisphosphate levels in the cell periphery. Over-expression of plasma membrane-targeted Src or phosphatidylinositol 3-kinase (PI3K) rescued cell spreading and focal adhesion turnover. The results suggest that SNARE-dependent trafficking is required for integrin signaling through a FAK/Src/PI3K-dependent pathway.  相似文献   

16.
Carcinoembryonic antigen-related cell adhesion molecules 6 (CEACAM6) is a cell adhesion receptor. Expression of CEACAM6 in non-small cell lung cancer (NSCLC) associated with tumor progression and metastatic condition via Src/FAK signaling pathway. We established three anti-CEACAM6 antibodies with valences, which were designed to be monomeric sdAb, bivalent sdAb (2Ab), and tetravalent sdAb (4Ab). The anti-CEACAM6 antibodies can be used to target CEACAM6 overexpressing NSCLC. Anti-CEACAM6 antibodies, sdAb, 2Ab and 4Ab, were modified with different valency via protein engineering. sdAb and multivalent sdAbs (2Ab & 4Ab) were expressed and purified from E.coli and CHO cells, respectively. We compared the effect of anti-CEACAM6 antibodies with doxorubicin in NSCLC cell line both in vitro and in vivo. The 4Ab showed significant effect on cell viability. In addition, A549 cells treated with 2Ab and 4Ab inhibited the invasion and migration. In western blot, the 2Ab and 4Ab showed significant inhibition of phospho FAK domain Ty397 that is essential for activation of Src kinase family. Meanwhile, overall protein analysis revealed that 2Ab and 4Ab potently inhibited the phosphorylation of pSRC, pERK, pFAK, pAKT, MMP-2, MMP-9 and N-cadherin. Anti-tumor effect was observed in an A549 NSCLC xenograft model treated with 2Ab or 4Ab compared with doxorubicin. Confocal analysis showed higher targeting ability of 4Ab than that of 2Ab at 4 h incubation. Our data suggests that 2Ab and 4Ab inhibits EMT-mediated migration and invasion via suppression of Src/FAK signaling, which exhibits therapeutic efficiency for NSCLC treatment.  相似文献   

17.
Disruption of cell-matrix interactions can lead to anoikis - apoptosis due to loss of matrix contacts. Altered fibronectin (FN) induces anoikis of primary human fibroblasts by a novel signaling pathway characterized by reduced phosphorylation of focal adhesion kinase (FAK). However, the receptors involved are unknown. FAK phosphorylation is regulated by nerve/glial antigen 2 (NG2) receptor signaling through PKCalpha a point at which signals from integrins and proteoglycans may converge. We found that an altered FN matrix induced anoikis in fibroblasts by upregulating NG2 and downregulating integrin alpha4. Suppressing NG2 expression or overexpressing alpha4 rescued cells from anoikis. NG2 overexpression alone induced apoptosis and, by reducing FAK phosphorylation, increased anoikis induced by an altered matrix. NG2 overexpression or an altered matrix also suppressed PKCalpha expression, but overexpressing integrin alpha4 enhanced FAK phosphorylation independently of PKCalpha. Cotransfection with NG2 cDNA and integrin alpha4 siRNA did not lower PKCalpha and pFAK levels more than transfection with either alone. PKCalpha was upstream of FAK phosphorylation, as silencing PKCalpha decreased FAK phosphorylation. PKCalpha overexpression reversed this behavior and rescued cells from anoikis. Thus, NG2 is a novel proapoptotic receptor, and NG2 and integrin alpha4 oppositely regulate anoikis in fibroblasts. NG2 and integrin alpha4 regulate FAK phosphorylation by PKCalpha-dependent and -independent pathways, respectively.  相似文献   

18.
Overexpression of focal adhesion kinase (FAK) has been well correlated with tumor development and/or the maintenance of tumor phenotype. In addition, inappropriate activation of the extracellular regulated kinase (ERK) signaling pathway is common to many human cancers. In the present study, we investigated the interplay between FAK and ERK in androgen-independent prostate cancer cells (PC3 and DU145 cells). We observed that suppression of FAK expression using small interfering RNA-mediated knockdown decreased the clonogenic activity, whereas overexpression of FAK increased it. We also observed that detachment of PC3 and DU145 cells from their substrate induced tyrosine phosphorylation of FAK. ERK knockdown diminished FAK protein levels and tyrosine phosphorylation of FAK as well as FAK promoter-reporter activity. We also tested the effect of MEK inhibitors and small interfering RNA-mediated knockdown of ERK1 and/or ERK2 on cell proliferation, invasiveness, and growth in soft agar of PC3 and DU145 cells. Inhibition of ERK signaling grossly impaired clonogenicity as well as invasion through Matrigel. However, inhibition of ERK signaling resulted in only a modest inhibition of 3H-thymidine incorporation and no effect on overall viability of the cells or increased sensitivity to anoikis. Taken together, these data show, for the first time, a requirement for FAK in aggressive phenotype of prostate cancer cells; reveal interdependence of FAK and ERK1/2 for clonogenic and invasive activity of androgen-independent prostate cancer cells; suggest a role for ERK regulation of FAK in substrate-dependent survival; and show for the first time, in any cell type, the regulation of FAK expression by ERK signaling pathway.  相似文献   

19.
Yoon JH  Choi YJ  Cha SW  Lee SG 《Phytomedicine》2012,19(3-4):284-292
Ginsenoside Rd is a protopanaxadiol-type ginsenoside found in ginseng and is the active ingredient in several Oriental herbal medicines. We investigated the effects of ginsenoside Rd on tumor invasion and metastasis in the human hepatocellular carcinoma HepG2 and its possible mechanism of action. HepG2 cells were treated with ginsenoside Rd at different concentrations. Scratch wound and Boyden chamber assays were used to determine the effects of ginsenoside Rd on the migration and invasiveness of HepG2 cells, respectively. The molecular mechanisms by which ginsenoside Rd inhibited the invasion and migration of HepG2 cells were investigated by RT-PCR, Western blotting, gelatin zymography, promoter assay, and treatment with inhibitors of MAPK signaling. Immunofluorescence analysis was conducted to evaluate the effect of ginsenoside Rd on focal adhesion formation in HepG2 cells. Treatment with ginsenoside Rd dose- and time-dependently inhibited the migration and invasion of HepG2 cells. It achieved this by reducing the expression of MMP-1, MMP-2, and MMP-7, by blocking MAPK signaling by inhibiting the phosphorylation of ERK and p38 MAPK, by inhibition of AP-1 activation, and by inducing focal adhesion formation and modulating vinculin localization and expression. Treatment of HepG2 cells with ginsenoside Rd significantly inhibited metastasis, most likely by blocking MMP activation and MAPK signaling pathways involved in cancer cell migration. These findings may be useful for the development of novel chemotherapeutic agents for the treatment of malignant cancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号