首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cigarette smoking is the top environmental risk factor for lung cancer.Nicotine,the addictive component of cigarettes,induces lung cancer cell proliferation,invasion and migration via the activation of nicotinic acetylcholine receptors(nAChRs).Genome-wide association studies(GWAS)show that CHRNA5 gene encoding a5-nAChR is especially relevant to lung cancer.However,the mechanism of this subunit in lung cancer is not clear.In the present study,we demonstrate that the expression of a5-nAChR is correlated with phosphorylated STAT3(pSTAT3)expression,smoking history and lower survival of non-small cell lung cancer(NSCLC)samples.Nicotine increased the levels of a5-nAChR mRNA and protein in NSCLC celllinesandactivatedtheJAK2/STAT3 signaling cascade.Nicotine-induced activation of JAK2/STAT3signaling was inhibited by the silencing of a5-nAChR.Characterization of the CHRNA5 promoter revealed four STAT3-response elements.ChIP assays confirmed that the CHRNA5 promoter contains STAT3 binding sites.BysilencingSTAT3 expression,nicotine-induced upregulation of a5-nAChR was suppressed.Downregulation of a5-nAChR and/or STAT3 expression inhibited nicotine-induced lung cancer cell proliferation.These results suggest that there is a feedback loop between a5-nAChR and STAT3 that contributestothenicotine-inducedtumor cell proliferation,which indicates that a5-nAChR is an important therapeutic target involved in tobacco-associated lung carcinogenesis.  相似文献   

2.
3.
The aim of this study was to investigate the function of Cystic fibrosis transmembrane conductance regulator (CFTR) in human glioblastoma (GBM) cells. Data dining results of the Human Protein Atlas showed that low CFTR expression was associated with poor prognosis for GBM patients. We found that CFTR protein expression was lower in U87 and U251 GBM cells than that in normal humane astrocyte cells. CFTR activation significantly reduced GBM cell proliferation. In addition, CFTR activation significantly abrogated migration and invasion of GBM cells. Besides, CFTR activator Forskolin treatment markedly reduced MMP-2 protein expression. These effects of CFTR activation were significantly inhibited by CFTR inhibitor CFTRinh-172 pretreatment. Our findings suggested that JAK2/STAT3 signaling was involved in the anti-glioblastoma effects of CFTR activation. Moreover, CFTR overexpression in combination with Forskolin induced a synergistic anti-proliferative response in U87?cells. Overall, our findings demonstrated that CFTR activation suppressed GBM cell proliferation, migration and invasion likely through the inhibition of JAK2/STAT3 signaling.  相似文献   

4.
The pathogenesis of lung cancer, the most common cancer, is complex and unclear, leading to limited treatment options and poor prognosis. To provide molecular insights into lung cancer development, we investigated the function and underlying mechanism of SH2B3 in the regulation of lung cancer. We indicated SH2B3 was diminished while TGF-β1 was elevated in lung cancer tissues and cells. Low SH2B3 level was correlated with poor prognosis of lung cancer patients. SH2B3 overexpression suppressed cancer cell anoikis resistance, proliferation, migration, invasion, and EMT, while TGF-β1 promoted those processes via reducing SH2B3. SH2B3 bound to JAK2 and SHP2 to repress JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling pathways, respectively, resulting in reduced cancer cell anoikis resistance, proliferation, migration, invasion, and EMT. Overexpression of SH2B3 suppressed lung cancer growth and metastasis in vivo. In conclusion, SH2B3 restrained the development of anoikis resistance and EMT of lung cancer cells via suppressing JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling cascades, leading to decreased cancer cell proliferation, migration, and invasion. Subject terms: Cell migration, Lung cancer  相似文献   

5.
BackgroundAberrant activation of STAT3 is frequently encountered and promotes survival, cellular proliferation, migration, invasion and angiogenesis in tumor cell. Convallatoxin, triterpenoid ingredient, exhibits anticancer pharmacological properties.PurposeIn this work, we investigated the anticancer potential of convallatoxin and explored whether convallatoxin mediates its effect through interference with the STAT3 activation in colorectal cancer cells.MethodsIn vitro, the underlying mechanisms of convallatoxin at inhibiting STAT3 activation were investigated by homology modeling and molecular docking, luciferase reporter assay, MTT assay, RT-PCR, Western blotting and immunofluorescence assays. Changes in cellular proliferation, apoptosis, migration, invasion and angiogenesis were analyzed by EdU labeling assay, colony formation assay, flow cytometry assay, wound-healing assay, matrigel transwell invasion assay and tube formation assays. And in vivo, antitumor activity of convallatoxin was assessed in a murine xenograft model of HCT116 cells.ResultsConvallatoxin decreased the viability of colorectal cancer lines. Moreover, convallatoxin reduced the P-STAT3 (T705) via the JAK1, JAK2, and Src pathways and inhibited serine-727 phosphorylation of STAT3 via the PI3K-AKT-mTOR-STAT3 pathways in colorectal cancer cells. Interestingly, we discovered the crosstalk between mTOR and JAK2 in mTOR/STAT3 and JAK/STAT3 pathways, which collaboratively regulated STAT3 activation and convallatoxin play a role in it. Convallatoxin also downregulated the expression of target genes involved cell survival (e.g., Survivin, Bcl-xl, Bcl-2), proliferation (e.g., Cyclin D1), metastasis (e.g., MMP-9), and angiogenesis (e.g., VEGF). Indeed, we found that convallatoxin inhibited tube formation, migration, and invasion of endothelial cells, and inhibited the proliferation. Finally, in vivo observations were confirmed by showing antitumor activity of convallatoxin in a murine xenograft model.ConclusionThe result of the current study show that convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer cells and indicate that convallatoxin could be a valuable candidate for the development of colorectal cancer therapeutic.  相似文献   

6.
7.
Wang H  Xie X  Lu WG  Ye DF  Chen HZ  Li X  Cheng Q 《Life sciences》2004,74(14):1739-1749
Deficient T cell immune function and intracellular signaling in cancer patients may result from effects of tumors or their products on lymphocytes. Recently, it was demonstrated that several ovarian carcinoma cell lines could produce soluble factors that inhibited T cell proliferation. The aim of this study is to assess the effect of supernatants from 3 ovarian carcinoma cell lines (OVCAR3, CAOV3, SKOV3) on signal transduction elements that are linked to the IL-2R and its JAK-STAT pathway. A profound inhibition of proliferation, lower level of IFN-gamma and higher level of IL-10 gene expression were observed when CD8+ T cells were co-cultured with supernatants from 3 ovarian carcinoma cell lines. Cell cycle studies on inhibited CD8+ T cells showed most of them were growth arrested in G0/G1 phase. Western blot analysis showed that tumor supernatants suppressed expression of JAK3 and tyrosine phosphorylation of STAT5. JAK1 was not altered and the inhibition of STAT3 only appeared in OVCAR3 cells. Tumor supernatants also partially blocked induction of IL-2R beta and gamma chains expression. These findings suggest that ovarian carcinoma cells may suppress T cell proliferation through inhibition IL-2 dependent signaling pathways, which may be a mechanism of ovarian carcinoma induced immunosuppression.  相似文献   

8.
9.
TRIM protein family is an evolutionarily conserved gene family implicated in a number of critical processes including inflammation, immunity, antiviral and cancer. In an effort to profile the expression patterns of TRIM superfamily in several non-small cell lung cancer (NSCLC) cell lines, we found that the expression of 10 TRIM genes including TRIM3, TRIM7, TRIM14, TRIM16, TRIM21, TRIM22, TRIM29, TRIM59, TRIM66 and TRIM70 was significantly upregulated in NSCLC cell lines compared with the normal human bronchial epithelial (HBE) cell line, whereas the expression of 7 other TRIM genes including TRIM4, TRIM9, TRIM36, TRIM46, TRIM54, TRIM67 and TRIM76 was significantly down-regulated in NSCLC cell lines compared with that in HBE cells. As TRIM59 has been reported to act as a proto-oncogene that affects both Ras and RB signal pathways in prostate cancer models, we here focused on the role of TRIM59 in the regulation of NSCLC cell proliferation and migration. We reported that TRIM59 protein was significantly increased in various NSCLC cell lines. SiRNA-induced knocking down of TRIM59 significantly inhibited the proliferation and migration of NSCLC cell lines by arresting cell cycle in G2 phase. Moreover, TRIM59 knocking down affected the expression of a number of cell cycle proteins including CDC25C and CDK1. Finally, we knocked down TRIM59 and found that p53 protein expression levels did not upregulate, so we proposed that TRIM59 may promote NSCLC cell growth through other pathways but not the p53 signaling pathway.  相似文献   

10.
P16 is the product of cyclin-dependent kinase 2 (CDKN2A) gene and plays multi-pronged roles in the cancer progression. Breast cancer (BC) is the most commonly diagnosed cancer type among females. In the current study, the potential function of P16 in the growth and metastasis of BC was investigated. Firstly, the expression statuses of P16 in different cancer types were investigated using Oncomine database and validated with corresponding cancer cell lines. Afterwards, the expression of P16 was knocked down in BC cell line BT-549 and the effect on the cell proliferation, sensitivity to paclitaxel (TAX), apoptosis, migration, and invasion abilities was assessed using CCK-8, Edu, flow cytometry, scratch, and transwell assays, respectively. The influence of P16 inhibition and P16 overexpression on the activity of IL-6/JAK/STAT3 signaling was explored. Additionally, the effect of P16 inhibition on the tumor growth was verified with a BC xenograft mice model. The abnormal expression of P16 was detected in BC cell line BT-549 as well as colorectal cancer and osteosarcoma cell lines. The inhibition of P16 suppressed the cell proliferation, invasion, and migration abilities while induced the apoptosis and sensitivity to TAX in BT-549 cells. At molecular level, P16 knockdown inhibited the expression of IL6ST and Survivin, and the phosphorylation of JAK2 and STAT3. However, the induced expression of P16 in P16-knockdown BT-549 cells restored the activity of IL-6/JAK2/STAT3 pathway. The results of in vitro assays were confirmed with BC xenograft models: the inhibition of P16 decreased the tumor growth rate. Findings outlined in the current study demonstrated that the inhibition of P16 decreased the growth and metastasis potential of BC cells by inhibiting IL-6/JAK2/STAT3 signaling.  相似文献   

11.
The intracellular signals driving the proliferation of breast carcinoma (BC) cells have been widely studied. Both the mitotic and metastatic potential of BC cells have been linked to the frequent overexpression of ErbB family members. Other signaling molecules, including the estrogen receptor, the tyrosine kinases c-Src and Syk, and STAT proteins, especially STAT3, have also been implicated in BC tumor growth. Here we have examined ErbB and STAT protein expression and activation in six BC-derived cell lines. ErbB expression and tyrosine phosphorylation varied considerably among the six cell lines. However, STAT protein expression and activation were more consistent. Two levels of STAT3 activation were distinguished in DNA-binding assays: an epidermal growth factor-inducible, high level that requires both ErbB1 and Janus kinase (JAK) activity and an elevated serum-dependent level that is maintained by autocrine/paracrine signaling and requires JAK activity but is independent of ErbB1 kinase activity. BC cell growth could be inhibited by dominant-negative versions of STAT3 and the JAK inhibitor AG490 but not by PD153035 or PD168393, inhibitors of ErbB1 kinase activity. This indicates that BC cell proliferation may be a consequence of STAT3 activation by autocrine/paracrine signals.  相似文献   

12.
Yang CL  Liu YY  Ma YG  Xue YX  Liu DG  Ren Y  Liu XB  Li Y  Li Z 《PloS one》2012,7(5):e37960
Curcumin, the active component of turmeric, has been shown to protect against carcinogenesis and prevent tumor development. However, little is known about its anti-tumor mechanism in small cell lung cancer (SCLC). In this study, we found that curcumin can inhibit SCLC cell proliferation, cell cycle, migration, invasion and angiogenesis through suppression of the STAT3. SCLC cells were treated with curcumin (15 μmol/L) and the results showed that curcumin was effective in inhibiting STAT3 phosphorylation to downregulate of an array of STAT3 downstream targets ,which contributed to suppression of cell proliferation, loss of colony formation, depression of cell migration and invasion. Curcumin also suppressed the expression of proliferative proteins (Survivin, Bcl-X(L) and Cyclin B1), and invasive proteins (VEGF, MMP-2, MMP-7 and ICAM-1). Knockdown of STAT3 expression by siRNA was able to induce anti-invasive effects in vitro. In contrast, activation of STAT3 upstream of interleukin 6 (IL-6) leads to the increased cell proliferation ,cell survival, angiogenesis, invasion, migration and tumor growth. Our findings illustrate the biologic significance of IL-6/JAK/STAT3 signaling in SCLC progression and provide novel evidence that the pathway may be a new potential target for therapy of SCLC. It was concluded that curcumin is a potent agent in the inhibition of STAT3 with favorable pharmacological activity,and curcumin may have translational potential as an effective cancer therapeutic or preventive agent for SCLC.  相似文献   

13.
14.
15.
Insulin‐like growth factor‐2 messenger RNA‐binding protein 3 (IGF2BP3) has been reported to contribute to tumorigenesis in several human cancers. However, the biological functions of IGF2BP3 in bladder cancer are poorly understood. We investigated the relation between IGF2BP3 expression and prognosis of bladder cancer patients. Cell proliferation, cell cycle and cell apoptosis assays were performed to assess IGF2BP3 functions. The results showed that IGF2BP3 was overexpressed in bladder cancer tissues compared with that in normal bladder tissues, and its higher expression was closely correlated with poor prognosis in bladder cancer patients. Overexpression of IGF2BP3 markedly promoted cell proliferation and cell cycle progression and inhibited cell apoptosis, while knockdown of IGF2BP3 notably suppressed the proliferation, promoted cell apoptosis and induced cell cycle arrest at the G0/G1 phase. Mechanistically, we revealed that IGF2BP3 promotes the activation of the JAK/STAT pathway in bladder cancer cells. Moreover, the JAK/STAT inhibitor dramatically blocked the tumour‐promoting activity of IGF2BP3. Tumour growth in vivo was also suppressed by knocking down of IGF2BP3. Hence, IGF2BP3 facilitated bladder cancer cell proliferation by activating the JAK/STAT signalling pathway. These findings suggest that IGF2BP3 exhibits an oncogenic effect in human bladder cancer progression.  相似文献   

16.
17.
Oncostatin M (OSM), a member of the IL-6 superfamily of cytokines, is elevated in patients with rheumatoid arthritis and, in synergy with IL-1, promotes cartilage degeneration by matrix metalloproteinases (MMPs). We have previously shown that OSM induces MMP and tissue inhibitor of metalloproteinase-3 (TIMP-3) gene expression in chondrocytes by protein tyrosine kinase-dependent mechanisms. In the present study, we investigated signaling pathways regulating the induction of MMP and TIMP-3 genes by OSM. We demonstrate that OSM rapidly stimulated phosphorylation of Janus kinase (JAK) 1, JAK2, JAK3, and STAT1 as well as extracellular signal-regulated kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase 1/2 mitogen-activated protein kinases in primary bovine and human chondrocytes. A JAK3-specific inhibitor blocked OSM-stimulated STAT1 tyrosine phosphorylation, DNA-binding activity of STAT1 as well as collagenase-1 (MMP-1), stromelysin-1 (MMP-3), collagenase-3 (MMP-13), and TIMP-3 RNA expression. In contrast, a JAK2-specific inhibitor, AG490, had no impact on these events. OSM-induced ERK1/2 activation was also not affected by these inhibitors. Similarly, curcumin (diferuloylmethane), an anti-inflammatory agent, suppressed OSM-stimulated STAT1 phosphorylation, DNA-binding activity of STAT1, and c-Jun N-terminal kinase activation without affecting JAK1, JAK2, JAK3, ERK1/2, and p38 phosphorylation. Curcumin also inhibited OSM-induced MMP-1, MMP-3, MMP-13, and TIMP-3 gene expression. Thus, OSM induces MMP and TIMP-3 genes in chondrocytes by activating JAK/STAT and mitogen-activated protein kinase signaling cascades, and interference with these pathways may be a useful approach to block the catabolic actions of OSM.  相似文献   

18.
Constitutive activation of STAT3 is a common feature in many solid tumors including non-small cell lung carcinoma (NSCLC). While activation of STAT3 is commonly achieved by somatic mutations to JAK2 in hematologic malignancies, similar mutations are not often found in solid tumors. Previous work has instead suggested that STAT3 activation in solid tumors is more commonly induced by hyperactive growth factor receptors or autocrine cytokine signaling. The interplay between STAT3 activation and other well-characterized oncogenic "driver" mutations in NSCLC has not been fully characterized, though constitutive STAT3 activation has been proposed to play an important role in resistance to various small-molecule therapies that target these oncogenes. In this study we demonstrate that STAT3 is constitutively activated in human NSCLC samples and in a variety of NSCLC lines independent of activating KRAS or tyrosine kinase mutations. We further show that genetic or pharmacologic inhibition of the gp130/JAK2 signaling pathway disrupts activation of STAT3. Interestingly, treatment of NSCLC cells with the JAK1/2 inhibitor ruxolitinib has no effect on cell proliferation and viability in two-dimensional culture, but inhibits growth in soft agar and xenograft assays. These data demonstrate that JAK2/STAT3 signaling operates independent of known driver mutations in NSCLC and plays critical roles in tumor cell behavior that may not be effectively inhibited by drugs that selectively target these driver mutations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号