首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-18 is an important mediator of obstruction-induced renal fibrosis and tubular epithelial cell injury independent of TGF-β1 activity. We sought to determine whether the profibrotic effect of IL-18 is mediated through Toll-like receptor 4 (TLR4). Male C57BL6 wild type and mice transgenic for human IL-18-binding protein were subjected to left unilateral ureteral obstruction versus sham operation. The kidneys were harvested 1 week postoperatively and analyzed for IL-18 production and TLR4 expression. In a separate arm, renal tubular epithelial cells (HK-2) were directly stimulated with IL-18 in the presence or absence of a TLR4 agonist, TLR4 antagonist, or TLR4 siRNA knockdown. Cell lysates were analyzed for TLR4, α-smooth muscle actin, and E-cadherin expression. TLR4 promotor activity, as well as AP-1 activation and the effect of AP-1 knockdown on TLR4 expression, was evaluated in HK-2 cells in response to IL-18 stimulation. The results demonstrate that IL-18 induces TLR4 expression during unilateral ureteral obstruction and induces TLR4 expression in HK-2 cells via AP-1 activation. Inhibition of TLR4 or knockdown of TLR4 gene expression in turn prevents IL-18-induced profibrotic changes in HK-2 cells. These results suggest that IL-18 induces profibrotic changes in tubular epithelial cells via increased TLR4 expression/signaling.  相似文献   

2.
3.
Y Huang  B Cai  M Xu  Z Qiu  Y Tao  Y Zhang  J Wang  Y Xu  Y Zhou  J Yang  X Han  Q Gao 《PloS one》2012,7(7):e38890

Background

Toll-like receptors (TLRs) are key factors in the innate immune system and initiate the inflammatory response to foreign pathogens such as bacteria, fungi and viruses. In the microenvironment of tumorigenesis, TLRs can promote inflammation and cell survival. Toll-like receptor 2/6 (TLR2/6) signaling in tumor cells is regarded as one of the mechanisms of chronic inflammation but it can also mediate tumor cell immune escape and tumor progression. However, the expression of TLR2 and its biological function in the development and progression of hepatocarcinoma have not been investigated. This study aimed to determine the expression of TLRs 1–10 in the established human hepatocellular carcinoma cell line BLE-7402, to investigate the biological effect of TLR2 on cell growth and survival.

Methods

TLR expression in BLE-7402 cells was assayed by RT-PCR, real-time PCR and flow cytometry (FCM). To further investigate the function of TLR2 in hepatocarcinoma growth, BLE-7402 cells were transfected with recombinant plasmids expressing one of three forms of TLR2 siRNA (sh-TLR2 RNAi(A, B and C)). TLR2 knockdown was confirmed using RT-PCR, real-time PCR and fluorescence microscopy. Tumor cell proliferation was monitored by MTT assay and secreted cytokines in the supernatant of transfected cells were measured by bead-based FCM, the function of TLR2 siRNA was also investigated in vivo.

Results

The BLE-7402 cell line expressed TLRs 2 to 10 at both mRNA and protein levels. TLR2 was the most highly expressed TLR. While all the three siRNAs inhibited TLR2 mRNA and protein expression, sh-TLR2 RNAi(B) had the strongest knockdown effect. TLR2 knockdown with sh-TLR2 RNAi(B) reduced cell proliferation. Furthermore, secretion of IL-6 and IL-8 was also reduced. The result showed a drastic reduction in tumor volume in mice treated with sh-TLR2 RNAi(B).

Discussion

These results suggest that TLR2 knockdown inhibit proliferation of cultured hepatocarcinoma cells and decrease the secretion of cytokines. It is suggested that TLR2 silencing may worth further investigations for siRNA based gene therapy in treatment of hepatocarcinoma.  相似文献   

4.

Background

Toll-like receptors (TLRs) are part of the innate immune system, able to recognize pathogen-associated molecular patterns and activate immune system upon pathogen challenge. Respiratory syncytial virus (RSV) is a RNA virus particularly detrimental in infancy. It could cause severe lower respiratory tract disease and recurrent infections related to inadequate development of anti-viral immunity. The reason could be inadequate multiple TLRs engagement, including TLR8 in recognition of single-stranded viral RNA and diminished synthesis of inflammatory mediators due to a lower expression.

Methods

Intracellular TLR8 expression in peripheral blood monocytes from RSV-infected infants was profiled and compared to healthy adults and age matched controls. Whether the observed difference in TLR8 expression is a transitory effect, infants in convalescent phase (4-6 weeks later) were retested. Specific TLR8-mediated TNF-α production in monocytes during an acute and convalescent phase was analyzed.

Results

RSV-infected and healthy infants had lower percentage of TLR8-expressing monocytes than healthy adults whereas decreased of TLR8 protein levels were detected only for RSV-infected infant group. Lower protein levels of TLR8 in monocytes from RSV-infected infants, compared to healthy infants, negatively correlated with respiratory frequency and resulted in lower TNF-α synthesis upon a specific TLR8 stimulation. In the convalescent phase, levels of TLR8 increased, accompanied by increased TNF-α synthesis compared to acute infection.

Conclusions

Lower TLR8 expression observed in monocytes, during an acute RSV infection, might have a dampening impact on early anti-viral cytokine production necessary to control RSV replication, and subsequently initiate an adaptive Th1 type immune response leading to severe disease in infected infants.  相似文献   

5.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in young infants worldwide. Previous studies have reported that the induction of interleukin-8/CXCL8 and RANTES/CCL5 correlates with disease severity in humans. The production of these chemokines is elicited by viral replication and is NF-kappaB dependent. RSV, a negative-sense single-stranded RNA virus, requires full-length positive-sense RNA for synthesis of new viral RNA. The aim of our studies was to investigate whether active viral replication by RSV could evoke chemokine production through TLR3-mediated signaling pathways. In TLR3-transfected HEK 293 cells, live RSV preferentially activated chemokines in both a time- and dose-dependent manner compared to vector controls. RSV was also shown to upregulate TLR3 in human lung fibroblasts and epithelial cells (MRC-5 and A549). Targeting the expression of TLR3 with small interfering RNA decreased synthesis of IP-10/CXCL10 and CCL5 but did not significantly reduce levels of CXCL8. Blocking the expression of the adapter protein MyD88 established a role for MyD88 in CXCL8 production, whereas CCL5 synthesis was found to be MyD88 independent. Production of CCL5 by RSV was induced directly through TLR3 signaling pathways and did not require interferon (IFN) signaling through the IFN-alpha/beta receptor. TLR3 did not affect viral replication, since equivalent viral loads were recovered from RSV-infected cells despite altered TLR3 expression. Taken together, our studies indicate that TLR3 mediates inflammatory cytokine and chemokine production in RSV-infected epithelial cells.  相似文献   

6.
Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2), generated by PI 4-phosphate 5-kinase (PIP5K), regulates many critical cellular events. PIP2 is also known to mediate plasma membrane localization of the Toll/IL-1 receptor domain-containing adaptor protein (TIRAP), required for the MyD88-dependent Toll-like receptor (TLR) 4 signaling pathway. Microglia are the primary immune competent cells in brain tissue, and TLR4 is important for microglial activation. However, a functional role for PIP5K and PIP2 in TLR4-dependent microglial activation remains unclear. Here, we knocked down PIP5Kα, a PIP5K isoform, in a BV2 microglial cell line using stable expression of lentiviral shRNA constructs or siRNA transfection. PIP5Kα knockdown significantly suppressed induction of inflammatory mediators, including IL-6, IL-1β, and nitric oxide, by lipopolysaccharide. PIP5Kα knockdown also attenuated signaling events downstream of TLR4 activation, including p38 MAPK and JNK phosphorylation, NF-κB p65 nuclear translocation, and IκB-α degradation. Complementation of the PIP5Kα knockdown cells with wild type but not kinase-dead PIP5Kα effectively restored the LPS-mediated inflammatory response. We found that PIP5Kα and TIRAP colocalized at the cell surface and interacted with each other, whereas kinase-dead PIP5Kα rendered TIRAP soluble. Furthermore, in LPS-stimulated control cells, plasma membrane PIP2 increased and subsequently declined, and TIRAP underwent bi-directional translocation between the membrane and cytosol, which temporally correlated with the changes in PIP2. In contrast, PIP5Kα knockdown that reduced PIP2 levels disrupted TIRAP membrane targeting by LPS. Together, our results suggest that PIP5Kα promotes TLR4-associated microglial inflammation by mediating PIP2-dependent recruitment of TIRAP to the plasma membrane.  相似文献   

7.
8.
There has been fast growing evidence showing that glycolysis plays a critical role in the activation of immune cells. Enhanced glycolysis leads to increased formation of intracellular lactate that is exported to the extracellular environment by monocarboxylate transporter 4 (MCT4). Although the biological activities of extracellular lactate have been well studied, it is less understood how the lactate export is regulated or whether lactate export affects glycolysis during inflammatory activation. In this study, we found that MCT4 is up-regulated by TLR2 and TLR4, but not TLR3 agonists in a variety of macrophages. The increased expression of MCT4 was mediated by MYD88 in a NF-κB-dependent manner. Furthermore, we found that MCT4 is required for macrophage activation upon TLR2 and TLR4 stimulations, as evidenced by attenuated expression of proinflammatory mediators in macrophages with MCT4 knockdown. Mechanistically, we found that MCT4 knockdown leads to enhanced intracellular accumulation of lactate and decreased glycolysis in LPS-treated macrophages. We found that LPS-induced expression of key glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 is diminished in macrophages with MCT4 knockdown. Our data suggest that MCT4 up-regulation represents a positive feedback mechanism in macrophages to maintain a high glycolytic rate that is essential to a fully activated inflammatory response.  相似文献   

9.
NLRC5, the largest member of the Nod-like receptor (NLR) family, has been reported to play a pivotal role in regulating inflammatory responses. Recent evidence suggests that NLRC5 participates in Toll-like receptor (TLR) signaling pathways and negatively modulates nuclear factor-κB (NF-κB) activation. In this study, we investigated the interaction between NLRC5 and TLR2 in the NF-κB inflammatory signaling pathway and the involvement of NLRC5 in TLR2-mediated allergic airway inflammation. We knocked down TLR2 and NLRC5, respectively in the RAW264.7 macrophage cell line by small interfering RNA (siRNA) and then stimulated the knockdown cells with lipoteichoic acid (LTA). In comparison with the negative siRNA group, the level of NLRC5 expression was lower in the TLR2 siRNA group, with a reduction in the NF-κB-related inflammatory response. Conversely, in the NLRC5 knockdown cells, after LTA-treated the level of TLR2 expression did not change but the expression levels of both NF-κB pp65 and NLRP3 increased remarkably. Thus, we hypothesize that NLRC5 participates in the LTA-induced inflammatory signaling pathway and regulates the inflammation via TLR2/NF-κB. Similarly, in subsequent in vivo experiments, we demonstrated that the expression level of NLRC5 was significantly increased in the ovalbumin-induced allergic airway inflammation. However, this effect disappeared in TLR2-deficient (TLR2 −/−) mice and was accompanied by reduced levels of NF-κB expression and airway inflammation. In conclusion, NLRC5 negatively regulates LTA-induced inflammatory response via a TLR2/NF-κB pathway in macrophages and also participates in TLR2-mediated allergic airway inflammation.  相似文献   

10.
11.
The two nonstructural (NS) proteins NS1 and NS2 of respiratory syncytial virus (RSV) are abundantly expressed in the infected cell but are not packaged in mature progeny virions. We found that both proteins were expressed early in infection, whereas the infected cells underwent apoptosis much later. Coincident with NS protein expression, a number of cellular antiapoptotic factors were expressed or activated at early stages, which included NF-kappaB and phosphorylated forms of protein kinases AKT, phosphoinositide-dependent protein kinase, and glycogen synthase kinase. Using specific short interfering RNAs (siRNAs), we achieved significant knockdown of one or both NS proteins in the infected cell, which resulted in abrogation of the antiapoptotic functions and led to early apoptosis. NS-dependent suppression of apoptosis was observed in Vero cells that are naturally devoid of type I interferons (IFN). The siRNA-based results were confirmed by the use of NS-deleted RSV mutants. Early activation of epidermal growth factor receptor (EGFR) in the RSV-infected cell did not require NS proteins. Premature apoptosis triggered by the loss of NS or by apoptosis-promoting drugs caused a severe reduction of RSV growth. Finally, recombinantly expressed NS1 and NS2, individually and together, reduced apoptosis by tumor necrosis factor alpha, suggesting an intrinsic antiapoptotic property of both. We conclude that the early-expressed nonstructural proteins of RSV boost viral replication by delaying the apoptosis of the infected cell via a novel IFN- and EGFR-independent pathway.  相似文献   

12.
Qin L  Hu CP  Feng JT  Xia Q 《PloS one》2011,6(12):e27113
Respiratory syncytial virus (RSV) preferentially infects airway epithelial cells,which might be responsible for susceptibility to asthma; however, the underlying mechanism is not clear. This study determined the activation of lymphocytes and drift of helper T (Th) subsets induced by RSV-infected human bronchial epithelial cells (HBECs) in vitro. HBECs had prolonged infection with RSV, and lymphocytes isolated from human peripheral blood were co-cultured with RSV-infected HBECs. Four groups were established, as follows: lymphocytes (group L); lymphocytes infected with RSV (group RL); co-culture of lymphocytes with non-infected HBECs (group HL); and co-culture of lymphocytes with infected HBECs (group HRL). After co-culture with HBECs for 24 hours, lymphocytes were collected and the following were determined in the 4 groups: cell cycle status; apoptosis rate; and concentrations of IL-4, IFN-γ, and IL-17 in the supernatants. Cell cycle analysis for lymphocytes showed a significant increase in S phase cells, a decrease in G1 phase cells, and a higher apoptosis rate in group HRL compared with the other three groups. In group HRL, the levels of IL-4, IFN-γ, and IL-17 in supernatants were also higher than the other three groups. For further study, lymphocytes were individually treated with supernatants from non-infected and RSV-infected HBECs for 24 h. We showed that supernatants from RSV-infected HBECs induced the differentiation of Th2 and Th17 subsets, and suppressed the differentiation of Treg subsets. Our results showed that HBECs with prolonged RSV infection can induce lymphocyte proliferation and apoptosis, and enhance the release of cytokines by lymphocytes. Moreover, subset drift might be caused by RSV-infected HBECs.  相似文献   

13.
Respiratory syncytial virus (RSV) preferentially infects lung epithelial cells. Infection by RSV leads to an extended inflammatory response, characterized by the release of interleukin-8 (IL-8). Activation of ERK MAP kinase is required for both RSV-induced inflammation and the extended survival of infected cells. In this study, we analyzed the role of the epidermal growth factor receptor (EGFR) in RSV activation of ERK. We demonstrate for the first time that RSV activates EGFR in lung epithelial cells. Activation of EGFR results in increased ERK activity, contributing to both the inflammatory response (IL-8 release) and prolonging the survival of RSV-infected cells. Inhibition of EGFR with siRNA decreased both ERK activation and IL-8 production after RSV. In analyzing the effect of EGFR activation on survival of RSV-infected cells, we found that EGFR activation by RSV resulted in ERK-dependent alterations in the balance of pro- versus anti-apoptotic Bcl2 proteins. RSV altered the balance between pro- and anti-apoptotic Bcl2 proteins (increased BclxL and decreased BimEL) increasing the relative amount of pro-survival proteins. This occurred in an EGFR-dependent manner. This study supports an important role for EGFR activity in the lifespan and inflammatory potential of RSV-infected epithelial cells.  相似文献   

14.
Respiratory syncytial virus (RSV) is worldwide the most frequent cause of bronchiolitis and pneumonia in infants requiring hospitalization. In the present study, we supply evidence that human lung microvascular endothelial cells, human pulmonary lung aorta endothelial cells, and HUVEC are target cells for productive RSV infection. All three RSV-infected endothelial cell types showed an enhanced cell surface expression of ICAM-1 (CD54), which increased in a time- and RSV-dose-dependent manner. By using noninfectious RSV particles we verified that replication of RSV is a prerequisite for the increase of ICAM-1 cell surface expression. The up-regulated ICAM-1 expression pattern correlated with an increased cellular ICAM-1 mRNA amount. In contrast to ICAM-1, a de novo expression of VCAM-1 (CD106) was only observed on RSV-infected HUVEC. Neither P-selectin (CD62P) nor E-selectin (CD62E) was up-regulated by RSV on human endothelial cells. Additional experiments performed with neutralizing Abs specific for IL-1alpha, IL-1beta, IL-6, and TNF-alpha, respectively, excluded an autocrine mechanism responsible for the observed ICAM-1 up-regulation. The virus-induced ICAM-1 up-regulation was dependent on protein kinase C and A, PI3K, and p38 MAPK activity. Adhesion experiments using polymorphonuclear neutrophil granulocytes (PMN) verified an increased ICAM-1-dependent adhesion rate of PMN cocultured with RSV-infected endothelial cells. Furthermore, the increased adhesiveness resulted in an enhanced transmigration rate of PMN. Our in vitro data suggest that human lung endothelial cells are target cells for RSV infection and that ICAM-1 up-regulated on RSV-infected endothelial cells might contribute to the enhanced accumulation of PMN into the bronchoalveolar space.  相似文献   

15.
目的: 探讨miR-31对DSS诱发结肠炎小鼠TLR4/NF-κB信号通路和凋亡相关蛋白的影响。方法: ①小鼠结肠炎实验:用1%葡聚糖硫酸钠(DSS)诱发小鼠溃疡性结肠炎(UC)。14只FVB非转基因小鼠随机分为control组(n=6),DSS组(n=8),16只FVB miR-31转基因小鼠随机分为miR-31过表达组(n=8),miR-31过表达+DSS 组(n=8),DSS溶于水后通过饮水给予小鼠。DSS组和miR-31+DSS组第一周饮用1%DSS水,第二周饮用正常无菌水,第三周饮用1%DSS水,如此5周后造模完成,之后留取小鼠的结肠组织,通过Western blot和IHC检测小鼠结肠组织NF-κB p65、TLR4、Bax、Bcl-2蛋白的表达;TUNEL检测小鼠结肠组织细胞凋亡。②细胞培养实验:在人结肠上皮细胞系HCT 116细胞中通过脂质体转染的方法转染miR-31 mimic和inhibitor,使miR-31过表达或敲低,每组均进行三次重复,48 h后收取细胞,通过Western blot检测NF-κB p65、TLR4蛋白的表达。结果: ①动物实验中,与control组相比,小鼠结肠组织中DSS组和miR-31过表达组NF-κB p65、TLR4蛋白表达水平和凋亡细胞指数均显著升高(P<0.05或P<0.01),Bcl-2/Bax比值显著降低(P<0.05或P<0.01);且与DSS组相比,miR-31+DSS组NF-κB p65、TLR4蛋白表达水平和凋亡细胞指数也显著升高(P<0.01),Bcl-2/Bax比值显著降低(P<0.01)。②细胞实验中,与control组相比, HCT 116细胞过表达miR-31组的NF-κB p65、TLR4蛋白表达水平均显著升高(P<0.05或P<0.01),敲低miR-31组的NF-κB p65、TLR4蛋白表达水平下降(P<0.05)。结论: miR-31通过促进TLR4/NF-κB信号通路和介导肠上皮细胞凋亡促进结肠炎的发展。  相似文献   

16.
The role of NR4A1 in apoptosis is controversial. Pancreatic β-cells often face endoplasmic reticulum (ER) stress under adverse conditions such as high free fatty acid (FFA) concentrations and sustained hyperglycemia. Severe ER stress results in β-cell apoptosis. The aim of this study was to analyze the role of NR4A1 in ER stress-mediated β-cell apoptosis and to characterize the related mechanisms. We confirmed that upon treatment with the ER stress inducers thapsigargin (TG) or palmitic acid (PA), the mRNA and protein levels of NR4A1 rapidly increased in both MIN6 cells and mouse islets. NR4A1 overexpression in MIN6 cells conferred resistance to cell loss induced by TG or PA, as assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and TUNEL assays indicated that NR4A1 overexpression also protected against ER stress-induced apoptosis. This conclusion was further confirmed by experiments exploiting siRNA to knockdown NR4A1 expression in MIN6 cells or exploiting NR4A1 knock-out mice. NR4A1 overexpression in MIN6 cells reduced C/EBP homologous protein (CHOP) expression and Caspase3 activation induced by TG or PA. NR4A1 overexpression in MIN6 cells or mouse islets resulted in Survivin up-regulation. A critical regulatory element was identified in Survivin promoter (−1872 bp to −1866 bp) with a putative NR4A1 binding site; ChIP assays demonstrated that NR4A1 physically associates with the Survivin promoter. In conclusion, NR4A1 protects pancreatic β-cells against ER stress-mediated apoptosis by up-regulating Survivin expression and down-regulating CHOP expression, which we termed as “positive and negative regulation.”  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号