首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glioma is the most aggressive malignant tumor in the adult central nervous system. Abnormal long noncoding RNA (lncRNA) FOXD2-AS1 expression was associated with tumor development. However, the possible role of FOXD2-AS1 in the progression of glioma is not known. In the present study, we used in vitro and in vivo assays to investigate the effect of abnormal expression of FOXD2-AS1 on glioma progression and to explore the mechanisms. FOXD2-AS1 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of FOXD2-AS1 was correlated with poor prognosis of glioma. Downregulation of FOXD2-AS1 decreased cell proliferation, migration, invasion, stemness, and epithelial-mesenchymal transition (EMT) in glioma cells and inhibited tumor growth in transplanted tumor. We also revealed that FOXD2-AS1 was mainly located in cytoplasm and microRNA (miR)-185-5p both targeted FOXD2-AS1 and CCND2 messenger RNA (mRNA) 3′-untranslated region (3′-UTR). miR-185-5p was downregulated in glioma tissue, cells, and sphere subpopulation. Downregulation of miR-185-5p was closely correlated with poor prognosis of glioma patients. In addition, miR-185-5p mimics decreased cell proliferation, migration, invasion, stemness, and EMT in glioma cells. CCND2 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of CCND2 was closely correlated with poor prognosis of glioma patients. CCND2 knockdown decreased cell proliferation, migration, invasion, and EMT in glioma cells. In glioma tissues, CCND2 expression was negatively associated with miR-185-5p, but positively correlated with FOXD2-AS1. FOXD2-AS1 knockdown and miR-185-5p mimics decreased CCND2 expression. Inhibition of miR-185-5p suppressed FOXD2-AS1 knockdown-induced decrease of CCND2 expression. Overexpression of CCND2 suppressed FOXD2-AS1 knockdown-induced inhibition of glioma malignancy. Taken together, our findings highlight the FOXD2-AS1/miR-185-5p/CCND2 axis in the glioma development.  相似文献   

2.
Micro RNAs (miRNAs) are small non-coding RNAs which are 19–24 nucleotides in length. MiRNAs play a vital role in the whole process of tumour development, but how they influence the tumourigenecity of epithelial ovarian cancer (EOC)cells is rarely researched. In our study, it was verified that miR-628-5p decreased the stem like cell percentage of EOC cells by inducing their apoptosis. The animal experiments showed that miR-628-5p decreased the tumourigenecity of EOC cells. Besides, we found miR-628-5p targeted at and down-regulated the expression of fibroblast growth factor receptor 2 (FGFR2). FGFR2 expressed higher in ovarian cancer tissues and was correlated with worse prognosis. Our findings indicated that miR-628-5pplays an important role in ovarian cancer stem cell driven tumorigenesis.  相似文献   

3.
4.
5.
6.
Osteosarcoma (OS) is a common kind of aggressive tumor in bone which was mostly identified in children and adolescents with extremely high risk of death. Accumulating research works have displayed that long noncoding RNAs (lncRNAs) exert an essential role in the development of multiple cancers. It has been reported that TMPO-AS1 is an oncogene in cancers; nonetheless, its molecular mechanism in OS is totally unclear. Our present study elucidated that a remarkable overexpression of TMPO-AS1 was found in OS tissues and cells. Moreover, TMPO-AS1 depletion restrained Wnt/β-catenin pathway and cell proliferation as well as facilitated cell apoptosis. Further molecular mechanism investigations showed that TMPO-AS1 can sponge to miR-199a-5p. Moreover, miR-199a-5p was at a low level at OS cells. Importantly, miR-199a-5p's overexpression was associated with the OS cells' decreased proliferation and increased apoptosis. In addition, WNT7B was confirmed as a downstream gene of miR-199a-5p. Also the WNT7B expression was reversely modulated by miR-199a-5p and positively modulated by TMPO-AS1. Rescue experiments suggested that downregulated WNT7B rescued miR-199a-5p inhibitor-mediated repression on OS progression, but the treatment of LiCl counteracted the effect of WNT7B downregulation. In a word, TMPO-AS1 serves as a competing endogenous RNA to boost osteosarcoma tumorigenesis by regulating miR-199a-5p/WNT7B axis, which provided an underlying therapeutic target for patients with OS.  相似文献   

7.
Glioma is a severe and highly lethal brain cancer, a malignancy largely stemming from growing in a relatively restrained area of the brain. Hence, the understanding of the molecular regulation of the growth of glioma is critical for improving its treatment. MicroRNA has become a hotspot in research on diseases, especially in the initiation and progression of different types of cancer. However, the molecular function and mechanisms of miR-508-5p in gliomagenesis are still unclear. The aim of this study was to investigate miR-508-5p expression in glioma and determine its effects on proliferation. miR-508-5p expression levels, both in glioma cell lines and in tissue, were significantly lower than in a normal human astrocyte cell line or adjacent tissues. Cell growth was analyzed using a MTT assay and over-expression of miR-508-5p was found to decrease glioma cell growth. Moreover, a bioinformatic analysis was performed, showing that glycoprotein non-metastatic melanoma B (GPNMB) was a direct target for miR-508-5p in glioma cells. Furthermore, in vivo treatment with miR-508-5p reduced GPNMB protein levels in the tumor. Additionally, overexpression of GPNMB without 3′-UTR partially reversed the cell growth arrest induced by miR-508-5p over-expression in glioma cells. In conclusion, these results indicate that increased expression of miR-508-5p might be related to glioma progression, indicating a potential role of miR-508-5p for clinical therapy.  相似文献   

8.
Through the microarray analysis, long noncoding RNA TPT1-AS1 (TPT1-AS1) was identified in the development of glioma. However, the specific effect of TPT1-AS1 on glioma autophagy in the recent years has not fully been investigated. Therefore, the purpose of our present study is to investigate the function of TPT1-AS1 on affecting autophagy of glioma cells through regulation of microRNA-770-5p (miR-770-5p)-mediated stathmin 1 (STMN1). Initially, the expression of TPT1-AS1, miR-770-5p, and STMN1 were determined in glioma cell lines, followed by the prediction and validation of their interaction. After that, the effects of TPT1-AS1, miR-770-5p, and STMN1 on the in vitro glioma cell proliferation and autophagy were assessed using EdU assay and macrophage-derived chemokine (MDC) and on the in vivo tumor development and autophagy were evaluated using a nude mouse xenograft tumor assay and immunofluorescence assay. In comparison with the normal cells, the glioma cells displayed upregulated expression of TPT1-AS1 and STMN1, but a downregulated miR-770-5p expression. miR-770-5p, which directly targeted STMN1, could be downregulated by TPT1-AS1. Subsequently, in glioma cells, TPT1-AS1 can function to competitively bind to miR-770-5p, thus regulatEing STMN1 expression. Moreover, glioma cell proliferation and autophagy could be mediated through the TPT1-AS1/miR-770-5p/STMN1 axis. From our data we conclude an inhibitory function of TPT1-AS1 in glioma cell autophagy by downregulating miR-770-5p and upregulating STMN1, which may be instrumental for the therapeutic targeting and clinical management of glioma.  相似文献   

9.
Wang L  Shi M  Hou S  Ding B  Liu L  Ji X  Zhang J  Deng Y 《FEBS letters》2012,586(9):1312-1317
MicroRNAs (miRNAs) exhibit tumor-specific expression signatures and play crucial roles in tumorigenesis by targeting oncogenes. Here, through analyzing the miRNA-array profiles of human glioblastoma tissues and the adjacent normal brain tissues, we found miR-483-5p was significantly down-regulated in gliomas, which was confirmed in both human glioma specimens and cell lines. The overexpression of miR-483-5p suppressed glioma cell proliferation and induced a G0/G1 arrest. In contrast, miR-483-5p inhibition promoted cell proliferation. Furthermore, by a dual-luciferase reporter assay and expression analysis, we identified extracellular signal-regulated kinase 1 (ERK1) as a direct target of miR-483-5p. ERK1 knockdown can block cell proliferation induced by miR-483-5p inhibition. Thus, our findings provide the first evidence that miR-483-5p can serve as a tumor suppressor in gliomas.  相似文献   

10.
11.
Terminal differentiation induced ncRNA (TINCR), a newly identified lncRNA, has been found to be associated with different human cancers including hepatocellular carcinoma (HCC). However, little is known regarding the pathological mechanisms of TINCR in HCC progression. In this study, we confirmed that TINCR expression was upregulated in HCC tumors and cell lines, and high TINCR expression was associated with larger tumor size, advanced tumor node metastasis stage, and poor prognosis. Functionally, knockdown of TINCR facilitated apoptosis and suppressed viability, colony formation and invasion in Huh7 and Hep3B cells. Mechanically, TINCR functioned as competing endogenous RNA (ceRNA) to regulate DEAD-box helicase 5 (DDX5) expression through sponging miR-218-5p. Moreover, the miR-218-5p expression was downregulated and DDX5 expression was upregulated in HCC tumors. The silencing of miR-218-5p or ectopic expression of DDX5 abated the tumor-suppressive effect of TINCR knockdown in vitro. Furthermore, si-TINCR-induced inactivation of AKT signaling was rescued by suppression of miR-218-5p or overexpression of DDX5. Also, the silencing of TINCR resulted in tumor growth inhibition in vivo. In summary, knockdown of TINCR suppressed HCC progression presumably by inactivation of AKT signaling through targeting the miR-218-5p/DDX5 axis, suggesting a novel TINCR/miR-218-5p/DDX5 pathway and therapy target for HCC.  相似文献   

12.
13.
ObjectiveThis study is to investigate the effects and the mechanisms of mitochondrial ferritin (FtMt) on the glioma tumorigenesis and angiogenesis.MethodsFtMt expression was detected in glioma tissues and cells as well as in nude mouse tissues. Cell proliferation and apoptosis rate were observed following transfection of LV-FtMt or sh-FtMt in glioma cell line. Moreover, glioma cells with FtMt over-expression/knockdown were co-cultured with human umbilical vein endothelial cells (HUVECs) to observe its function on HUVEC proliferation, angiogenic ability and the vascular endothelial growth factor (VEGF) content. Gain and loss of function of small nucleolar RNA host gene 1 (SNHG1) and miR-9-5p were performed in glioma cells and GBM nude mice to observe its effect on glioma cell proliferation and HUVEC angiogenic ability. Luciferase reporter gene and RIP assay were employed to inspect the interactions among SNHG1, FtMt and miR-9-5p. Additionally, a xenograft mouse model was applied to determine the role of FtMt in glioma.ResultsIn this work, FtMt was strongly expressed in glioma tissues and cells as well as in nude mouse tumor tissues. The employment of the loss-of and gain-of functions assays illustrated that FtMt enhanced glioma tumorigenesis and angiogenesis. Mechanistically, our findings showed that FtMt positively related to SNHG1 while negatively correlated with miR-9-5p, and both SNHG1 and FtMt can competitively bind with miR-9-5p. Besides, the inhibition effects of sh-FtMt on glioma were surveyed in vivo experiments.ConclusionEvidence in this study suggested that FtMt promotes glioma tumorigenesis and angiogenesis via SNHG1 mediated miR-9-5p expression, which may provide a theoretical basis for glioma treatment.  相似文献   

14.
microRNAs (miRNAs) can function as a tumor suppressor or oncogenic genes in human cancers. Alternation expression of miR-199a-5p has been revealed in several human cancers. However, its expression pattern and biological roles in glioma remain unclear. Expression levels of miR-199a-5p in glioma were evaluated at first. The effects of miR-199a-5p expression on cell proliferation, migration, and invasion were investigated using the MTT assay, wound-healing assay, and transwell invasion assay. The expression of miR-199a-5p was found to be reduced in glioma cell lines. Overexpression of miR-199a-5p inhibits glioma cell proliferation, migration, and invasion in vitro. Furthermore, the target of miR-199a-5p was predicted by TargetScan and validated by luciferase activity reporter assay. We found magnesium transporter 1 (MAGT1) was a direct target of miR-199a-5p. Overexpression of MAGT1 reversed the effects of miR-199a-5p on glioma cell behaviors. Taken together, our study revealed that miR-199a-5p and MAGT1 have the potential to be used as a biomarker for glioma.  相似文献   

15.
Numerous studies have reported that long noncoding RNA (lncRNA) dysregulation is involved in the progression of many malignant tumors, including glioma. The lncRNA ZNFX1 antisense RNA 1 (ZFAS1) plays an oncogenic role in various malignant tumors, such as gastric cancer and hepatocellular carcinoma. However, the underlying molecular mechanism of ZFAS1 in glioma has not been fully clarified. In this study, we found that the expression of ZFAS1 was upregulated in both glioma tissues and cell lines. Functional experiments revealed that ZFAS1 promoted glioma proliferation, migration and invasion, and increased resistance to temozolomide in vitro. By using online databases, RNA pull-down assays and luciferase reporter assays, ZFAS1 was demonstrated to act as a sponge of miR-150-5p. Furthermore, proteolipid protein 2 (PLP2) was shown to be the functional target of miR-150-5p. Rescue experiments revealed that ZFAS1 regulated the expression of PLP2 by sponging miR-150-5p. Finally, a xenograft tumor assay demonstrated that ZFAS1 promoted glioma growth in vivo. Our results showed that ZFAS1 promoted glioma malignant progression by regulating the miR-150-5p/PLP2 axis, which may provide a potential therapeutic target for the treatment of glioma.  相似文献   

16.
Dysregulated long noncoding RNAs (lncRNAs) remains to be explored in tumorigenesis. LncRNA HOXC13 antisense RNA (HOXC13-AS) has been found as an oncogene in many cancers; however, the role of HOXC13-AS in breast cancer still elusive. In this study, the HOXC13-AS levels and its role in cell proliferation was first measured by real-time quantitative polymerase chain reaction, Cell Counting Kit-8 assay, and colony formation assay. It showed that HOXC13-AS was increased in breast cancer tissues compared with the adjacent normal tissues and upregulated HOXC13-AS promoted the growth of breast cancer cells. Then, we found that the miR-497-5p levels were downregulated in cancer tissues compared with the adjacent tissues and miR-497-5p suppressed breast cancer cell proliferation. Further study showed that HOXC13-AS could function as a “sponge” for miR-497-5p then suppress miR-497-5p expression. Moreover, we next identified that Phosphatase and Tensin homolog (PTEN) is the target of miR-497-5p. Overexpression of miR-497-5p by chemical mimics decreased the expression of PTEN, while downregulation of miR-497-5p by HOXC13-AS rescued the expression of PTEN. Finally, we showed that HOXC13-AS promoted the proliferation of breast cancer cells and tumor growth through miR-497-5p/PTEN axis in vitro and in vivo. Hence, we conclude that HOXC13-AS, which is significantly upregulated in breast cancers, promoted cell proliferation through the suppressed miR-497-5p and further upregulated PTEN.  相似文献   

17.
The current study was designed to examine the functional role and mechanism of miR-125a-3p in glioma development. Quantitative RT-PCR was used to evaluate miR-125a-3p expression in 60 glioma cases of different malignant grades. Then, the clinic pathologic significance of miR-125a-3p expression was determined in combination with the prognosis of the patients. In addition, the effects and mechanisms of miR-125a-3p on the proliferation, apoptosis and invasion of glioma cells were further investigated. The results showed that the expression of miR-125a-3p was decreased significantly in most malignant glioma samples relative to normal brain tissues and glioma tissues of low-malignant degree. Further kaplan-meier survival analysis showed that the lower expression of miR-125a-3p was associated with a poor prognosis of GBM patients. Functional analysis showed that the reintroduction of miR-125a-3p into glioblastoma cell lines induces markedly the apoptosis and suppresses the proliferation and migration of glioblastoma cells in vitro and in vivo. Luciferase assay and Western blot analysis revealed that Nrg1 is a direct target of miR-125a-3p. Furthermore, an increased expression of Nrg1 could reverse the effects of overexpression of miR-125a-3p on the proliferation, apoptosis and migration of glioblastoma cells. These findings suggest that miR-125a-3p performed an important role in glioma development mediated by directly regulating the expression of Nrg1. This study also provides a potential target for diagnosis and treatment of malignant glioma.  相似文献   

18.
19.
Glioma, an aggressive tumor in brain, presents a very poor prognosis. Emerging evidence has demonstrated that dysfunction of long noncoding RNAs (lncRNAs) is closely related to giloma development. However, the roles of lncRNA BLACAT1 in glioma are not unknown. In this study, we utilized in vitro and in vivo experiments to explore the effects of BLACAT1 on glioma cells. BLACAT1 levels were increased in glioma tissues. Upregulation of BLACAT1 showed poor prognosis. Silencing of BLACAT1 markedly repressed glioma proliferation, migration, and invasion, and suppressed glioma growth in vivo. We also illustrated that BLACAT1 worked as the sponge for miR-605-3p and promoted VASP expression. miR-605-3p was downregulated in glioma and repressed glioma proliferation, migration, and invasion. And VASP is upregulated and contributed to glioma progression. Summarily, this study highlights the important roles of BLACAT1/miR-605-3p/VASP axis in glioma progression.  相似文献   

20.
Glioma is the most common and fatal primary brain tumour with poor prognosis; however, the functional roles of miRNAs in glioma malignant progression are insufficiently understood. Here, we used an integrated approach to identify miRNA functional targets during glioma malignant progression by combining the paired expression profiles of miRNAs and mRNAs across 160 Chinese glioma patients, and further constructed the functional miRNA–mRNA regulatory network. As a result, most tumour-suppressive miRNAs in glioma progression were newly discovered, whose functions were widely involved in gliomagenesis. Moreover, three miRNA signatures, with different combinations of hub miRNAs (regulations≥30) were constructed, which could independently predict the survival of patients with all gliomas, high-grade glioma and glioblastoma. Our network-based method increased the ability to identify the prognostic biomarkers, when compared with the traditional method and random conditions. Hsa-miR-524-5p and hsa-miR-628-5p, shared by these three signatures, acted as protective factors and their expression decreased gradually during glioma progression. Functional analysis of these miRNA signatures highlighted their critical roles in cell cycle and cell proliferation in glioblastoma malignant progression, especially hsa-miR-524-5p and hsa-miR-628-5p exhibited dominant regulatory activities. Therefore, network-based biomarkers are expected to be more effective and provide deep insights into the molecular mechanism of glioma malignant progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号