首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cellular signalling》2014,26(11):2333-2342
Colorectal cancer (CRC) is one of the most common causes of cancer-related death worldwide. The leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is a newly identified surface marker of colorectal cancer stem cells (CSCs). Expression level of LGR5 is commonly elevated in human CRCs. Our previous study demonstrated that the elevated expression of LGR5 is associated with CRC initiation and progression. However, the role of LGR5 in CRC pathogenesis has not been sufficiently established. In this study, we aimed to characterize the role of LGR5 in CRC pathogenesis using the loss-of-function approach. Depletion of LGR5 suppressed the growth of several cultured CRC cells and caused an increase in the fraction of apoptotic cells, which were analyzed using Annexin V/PI staining and DNA fragmentation assay. Furthermore, depleting LGR5 induced apoptosis through the loss of mitochondrial membrane potential. Additionally, depletion of LGR5 suppressed β-catenin nuclear translocation and blocked the activity of Wnt/β-catenin signaling as manifested in the reduced expression of c-myc and cyclin D, two Wnt/β-catenin targets in CRC cells. Treatment with Wnt3a considerably alleviated the growth inhibition and apoptotic cell death induced by LGR5 depletion in CRC cells. These data suggested that LGR5 regulates cell proliferation and survival by targeting the Wnt/β-catenin signaling pathway. Thus, the findings of this study suggest that LGR5 plays a vital role in CRC pathogenesis and has the potential to serve as a diagnostic marker and a therapeutic target for CRC patients.  相似文献   

2.
Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.  相似文献   

3.
Lung cancer ranks topmost among the most frequently diagnosed cancers. Despite increasing research, there are still unresolved mysteries in the molecular mechanism of lung cancer. Long noncoding RNA small nucleolar RNA host gene 11 (SNHG11) was found to be upregulated in lung cancer and facilitated lung cancer cell proliferation, migration, invasion, and epithelial–mesenchymal transition progression while suppressed cell apoptosis. Moreover, the high expression of SNHG11 was correlated with poor prognosis of lung cancer patients, TNM stage, and tumor size. Further assays demonstrated that SNHG11 functioned in lung cancer cells via Wnt/β-catenin signaling pathway. Subsequently, Wnt/β-catenin pathway was found to be activated through SNHG11/miR-4436a/CTNNB1 ceRNA axis. As inhibiting miR-4436 could only partly rescue the suppression of cell function induced by silencing SNHG11, it was suspected that β-catenin might enter cell nucleus through other pathways. Mechanism investigation proved that SNHG11 would directly bind with β-catenin to activate classic Wnt pathway. Subsequently, in vivo tumorigenesis was also demonstrated to be enhanced by SNHG11. Hence, SNHG11 was found to promote lung cancer progression by activating Wnt/β-catenin pathway in two different patterns, implying that SNHG11 might contribute to lung cancer treatment by acting as a therapeutic target.  相似文献   

4.
It has been reported that estrogen receptors (ERs) participate in carcinogenesis by directly regulating NOD-like receptors (NLRs). However, the expression profiles of ERs and NLRs in tumor and the ER-NLR regulated signaling pathway are not clear. In this study, we summarized gene expression profiles of ERs and NLRs across normal and tumor tissue by comprehensive data mining. Then we explored the ER-NLR regulated signaling pathway by RNA sequencing (RNA-seq). The results showed that the NLRs and ERs were differentially expressed in different neoplasm tissues. Such expression discrepancies might influence inflammatory regulation and tumorigenesis. Importantly, we identified that ER-NLR regulate Wnt/β-catenin pathway in colon cancer. Taking colon adenocarcinoma (COAD) as example, we found that Wnt2b/LRP8/Dvl1/Axin2/GSK3a/APC/β-catenin genes were differentially expressed in ER−/− mouse colon tissue and colon cancer cells. The selective ERα antagonist could significantly decrease Wnt2b/LRP8/Dvl1 expression, increase destruction complex (Axin2/GSK3a/APC) expression, and promote degradation of β-catenin in colon carcinoma cell by inhibited NLRP3 expression. In short, the research demonstrates that NLRs are potential biomarkers for cancer, and ERs can regulate the Wnt/β-catenin signaling pathway in cancer by targeting the NLRs. Our results provide a possible signaling pathway in which ER-NLR is correlated with Wnt/β-catenin.  相似文献   

5.
This study aims to elucidate the mechanisms of Wnt/β-catenin signaling pathway in the development of preeclampsia (PE). The mRNA levels of Wnt1, β-catenin, c-myc and cyclinD1 were determined by real-time PCR in the placentas. Moreover, the expression levels of Wnt1, β-catenin, Dickkopf-1 (DKK1) and glycogen synthase kinase 3β (GSK-3β) proteins were detected by Western blot. Immunohistochemistry was used in placental tissue microarray to localize the expression of Wnt1, β-catenin, DKK1 proteins in the placentas of two groups. Compared with the control placentas, the mRNA levels of Wnt1, β-catenin, c-myc and cyclinD1 were decreased in the severe preeclamptic placentas. The Western blot results showed that the expression levels of Wnt1, β-catenin, and GSK-3β proteins were significantly elevated in the control group, while the expression level of DKK1 was significantly decreased. In addition, the staining intensity of Wnt1, β-catenin were weaker in the placentas of the severe PE group while the staining intensity of DKK1 was significantly stronger in the placentas of the severe PE group. Wnt/β-catenin signaling pathway may play a significant role in the pathogenesis of PE by regulating the invasion and proliferation of trophoblast.  相似文献   

6.
Angiogenesis and apoptosis are critical for the growth of colorectal cancer (CRC). The study aimed to investigate the effects of TGM2 in CRC. Forty-two patients were recruited and their TGM2 levels were detected by performing Realtime-qPCR (RT-qPCR), Western blot and immunohistochemistry , respectively. Levels of TGM2, MMP-2 and MMP-9 in four CRC cell lines and in normal cells were determined using RT-qPCR and Western blot. TGM2-siRNA was transfected into LoVo and HCT116 cells, respectively. TGM2 levels, cell viability, cell apoptosis, angiogenesis and related factors were determined. the tumorigenesis rates of mice were detected after TGM2-siRNA transfection. TGM2 were upregulated in patients with CRC. High TGM2 level of CRC patients had a lower survival rate. The levels of TGM2, MMP-2 and MMP-9 were upregulated in all detected CRC cell lines. Silencing TGM2 could inhibit cell viabilities, angiogenesis and suppress the expressions of MMP-2, MMP-9, Wnt3a, β-catenin and Cyclin D1 , whereas cell apoptosis and the expressions of Caspase-3 and TIMP-1 were promoted. Tumor weights and volumes were reduced by TGM2-siRNA interference. The effects of TGM2-siRNA interference might be related to Wnt/β-catenin Pathway. This might prove that TGM2 could be used as a molecular target in the treatment of CRC.  相似文献   

7.
ZCCHC14 is a CCHC-type zinc finger protein which is expressed in tissues in human and mouse. The function of ZCCHC14 in tumours remains unclear. In this research, we explored the expression, function and related molecular mechanisms of ZCCHC14 in human non–small cell lung cancer (NSCLC). Immunochemistry staining showed that ZCCHC14 was low-expressed or absent in NSCLC tissues. In NSCLC patients, the low expression of ZCCHC14 in tumour tissues was significantly correlated with TNM stage, differentiation degree and adverse clinical outcome (P < .05). The proliferation and invasion ability of cancer cells transfected with ZCCHC14 CRISPR/Ca9 KO plasmids was significantly enhanced (P < .05). Immunoblotting analysis indicated that the expression of p-P38, cyclinD1 and MMP7 were significantly up-regulated after disabling ZCCHC14 (P < .05). We used MAPK-P38 pathway inhibitor doramapimod (BIRB 796) to inhibit P38 signalling pathway activity and determined that the agent significantly disrupted the function of ZCCHC14 and hindered the proliferation and invasion of the tumour. The finding revealed that ZCCHC14 can regulate proliferation and invasion of NSCLC through the P38 pathway. ZCCHC14 plays a crucial regulatory role in the development of NSCLC and may become a zinc finger target for clinical treatment.  相似文献   

8.
Background: The aim of this study was to investigate the potential effects of the 5, 10, 15, 20-tetrakis (1-methylpyridinium-4-yl) porphyrin (TMPyP4) on the proliferation and apoptosis of SW480 cells and the underlying mechanisms by which TMPyP4 exerted its actions. Methods: After treated with different doses of TMPyP4, cell viability was determined by MTT method, the apoptosis was observed by flow cytometry (FCM) and the expression of Wnt, GSK-3β, β-catenin and cyclinD1 was measured by RT-PCR and Western blot analysis. Results: The analysis revealed that TMPyP4 potently suppressed cell viability and induced the apoptosis of SW480 cells in a dose-dependent manner. In addition, the downregulation of Wnt, β-catenin and cyclinD1 expression levels was detected in TMPyP4-treated SW480 cells. However, followed by the block of Wnt signaling pathway using siRNA methods, the effects of TMPyP4 on proliferation and apoptosis of SW480 cells were significantly reduced. Conclusion: It indicates that the TMPyP4-inhibited proliferation and -induced apoptosis in SW480 cells was accompanied by the suppression of Wnt/β-catenin signaling pathway. Therefore, TMPyP4 may represent a potential therapeutic method for the treatment of colon carcinoma.  相似文献   

9.
Curcumin, a naturally occurring phenolic compound, has a diversity of antitumor activities. It has been previously demonstrated that curcumin can inhibit the invasion and metastasis of tumors through activation of the tumor suppressor DnaJ-like heat shock protein 40 (HLJ1). However, the specific roles and mechanisms of curcumin in regulating the malignant behaviors of non-small cell lung cancer (NSCLC) cells still remain unclear. In this study, we found that curcumin could inhibit the proliferation and invasion of NSCLC cells and induce G0/G1 phase arrest. Metastasis-associated protein 1 (MTA1) overexpression has been detected in a wide variety of aggressive tumors and plays an important role on cell invasion and metastasis. Our results showed that curcumin could effectively inhibit the MTA1 expression of NSCLC cells. Further research on the subsequent mechanism showed that curcumin inhibited the proliferation and invasion of NSCLC cells through MTA1-mediated inactivation of Wnt/β-catenin pathway. Wnt/β-catenin signaling was reported to play a critical cooperative role on promoting lung tumorigenesis. Thus, these investigations provided novel insights into the mechanisms of curcumin on inhibition of NSCLC cell growth and invasion and showed potential therapeutic strategies for NSCLC.  相似文献   

10.
11.
BackgroundCelecoxib (CXB), a selective COX-2 inhibitor NSAID, has exhibited prominent anti-proliferative potential against numerous cancers. However, its low bioavailability and long term exposure related cardiovascular side effects, limit its clinical application. In order to overcome these limitations, natural bioactive compounds with lower toxicity profile are used in combination with therapeutic drugs. Therfore, in this study Piperine (PIP), a natural chemo-preventive agent possessing drug bioavailability enhancing properties, was considered to be used in combination with low doses of CXB.PurposeWe hypothesized that the combination of PIP with CXB will have a synergistic anti-proliferative effect on colon cancer cells.Study designThe potency of PIP and CXB alone and in combination was evaluated in HT-29 human colon adenocarcinoma cells and mechanism of growth inhibition was investigated by analyzing the players in apoptotic and Wnt/β-catenin signaling pathways.MethodsThe effect of PIP on the oral bioavailability of CXB in mice was investigated using HPLC analysis. The study investigated the synergistic anti-proliferative effect of CXB and PIP on HT-29 cells and IEC-6 non-tumorigenic rat intestinal epithelial cells by SRB cell viability assay. Further, the cellular and molecular mechanism(s) involved in the anti-proliferative combinatorial effect was extensively explored in HT-29 cells by flow cytometry and western blotting. The in vivo efficacy of this combination was studied in CT26.WT tumor syngeneic Balb/c mice model.ResultsPIP as a bioenhancer increased the oral bioavailability of CXB (129%). The IC50 of CXB and PIP were evaluated to select doses for combination treatment of HT-29 cells. The drug combinations having combination index (CI) less than 1 were screened using CompuSyn software. These combinations were significantly cytotoxic to HT-29 cells but IEC-6 were least effected. Further, the mechanism behind CXB and PIP mediated cell death was explored. The co-treatment led to reactive oxygen species generation, mitochondrial dysfunction, caspase activation and enhanced apoptosis in HT-29 cells. Additionally, the combination treatment synergistically modulated Wnt/β-catenin pathway, downregulated the stemness markers and boosted therapeutic response in CT26 syngeneic Balb/c mice.ConclusionThe outcomes of the study suggests that combining CXB and PIP offers a novel approach for the treatment of colon cancer.  相似文献   

12.
Tumor necrosis factor receptor-associated factor 4 (TRAF4) is upregulated in various subtypes of breast cancers and cell lines; however, the precise functions of TRAF4 are poorly understood. Our objective was to investigate its relationship with β-catenin. TRAF4 participates in several signaling pathways, such as NF-κB and JNK signaling pathways. In this study, we identified β-catenin as a TRAF4-binding protein, have shown that TRAF4 enhanced expression of β-catenin, and found that TRAF4 mediated the translocation of β-catenin from the cytoplasm to the nucleus, thereby facilitating activation of the Wnt signaling pathway in breast cancer.  相似文献   

13.
Non-small cell lung cancer (NSCLC) is one of the most common causes for lung cancer and cancer-related death. The imbalance between cell proliferation and apoptosis was suggested to play an important role in cancer pathogenesis and PKCε is one of the widely recognized targets. Here, we demonstrate that miR-143 is aberrantly downregulated in NSCLC tissue and negatively correlates with expression of PKCε. We show that miR-143 specifically targets the 3′-UTR of PKCε and regulates its expression. Treatment with miR-143 inhibitor mimics cell proliferation and apoptosis imbalance in NSCLC, while inhibition of PKCε can reverse it. Our findings suggest that targeting PKCε overexpression in NSCLC should be beneficial for lung cancer therapy.  相似文献   

14.
In the past decade, substantial evidence established that long noncoding RNAs are serious about mediating the evolution of malignancies. In previous studies, LINC00365, which has not been reported in colorectal cancer (CRC), was selected using the bioinformatics analysis in GSE109454 and GSE41655 data sets. However, the function and mechanism of LINC00365 are still obscure. In our study, LINC00365 was found upregulated in CRC specimens and intimately connected with the prognosis of patients with CRC. In addition, LINC00365 overexpression enhances the cell abilities of proliferation, migration, and invasion in vitro. Meanwhile, mechanistic studies showed that LINC00365 might involve in CRC cell progression by mediating the Wnt/β-catenin pathway. Furthermore, LINC00365 upregulation increased CDK1 protein expression. In conclusion, this study suggests that LINC00365 acts as a vital part in facilitating CRC progression and might play as a therapeutic target for patients with CRC.  相似文献   

15.
16.
17.
MicroRNAs (miRNAs) are strongly implicated in many cancers, including breast cancer. Recently, microRNA-301a (miR-301a) has been proved to play a substantial role in gastric cancer, but its functions in the context of breast cancer remain unknown. Here we report that miR-301a was markedly upregulated in primary tumor samples from patients with distant metastases and pro-metastatic breast cancer cell lines. Gain-of-function and loss-of-function studies showed that ectopic overexpression of miR-301a promoted breast cancer cell migration, invasion and metastasis both in vitro and in vivo. Notably, Wnt/β-catenin signaling was hyperactivated in metastatic breast cancer cells that express miR-301a, and mediated miR-301a-induced invasion and metastasis. Furthermore, miR-301a directly targeted and suppressed PTEN, one negative regulator of the Wnt/β-catenin signaling cascade. These results demonstrate that miR-301a maintains constitutively activated Wnt/β-catenin signaling by directly targeting PTEN, which promotes breast cancer invasion and metastasis. Taken together, our findings reveal a new regulatory mechanism of miR-301a and suggest that miR-301a might be a potential target in breast cancer therapy.  相似文献   

18.
Li  YaJie  Zhao  Yan  Li  Yi  Zhang  XiaoYi  Li  Chao  Long  NiYa  Chen  XueShu  Bao  LiYa  Zhou  JianJiang  Xie  Yuan 《Journal of physiology and biochemistry》2021,77(1):93-104
Journal of Physiology and Biochemistry - Gastric cancer (GC) is one of the most common cancers, with most patients often succumbing to death as a result of tumor metastasis. Recent work has...  相似文献   

19.
Molecular and Cellular Biochemistry - MiR-200a acts as a key role in tumor malignant progression. This work purposed to assess the function of miR-200a in Wilm’s tumor. Based on...  相似文献   

20.
Although great progress has been made in surgical techniques, traditional radiotherapy, and chemotherapy, gastric cancer (GC) is still the most common malignant tumor and has a high mortality, which highlights the importance of novel diagnostic markers. Emerging studies suggest that different microRNAs (miRNAs) are involved in tumorigenesis of GC. In this study, we found that miRNA-192 and -215 are significantly upregulated in GC and promote cell proliferation and migration. Adenomatous polyposis coli (APC), a well-known negative regulator in Wnt signaling, has been proved to be a target of miRNA-192 and -215. Inhibition of miRNA-192 or -215 reduced the Topflash activities and repressed the expression of Wnt signaling pathway proteins, while APC small interfering RNAs reversed the inhibitory effects, suggesting that miRNA-192 and -215 activate Wnt signaling via APC. In addition, APC mediates the cell proliferation and migration regulated by miRNA-192 and -215. Furthermore, APC is downregulated in GC tissues and negatively correlated with the expression of miRNA-192 and -215. In summary, miRNA-192 and -215 target APC and function as oncogenic miRNAs by activating Wnt signaling in GC, revealing to be potential therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号