首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cyclic AMP-protein kinase A (PKA) pathway plays an important role in signal transduction in renal tubular cells, however, its role in transport regulation is not completely established. The aim of this study was to investigate in vivo the effect of PKA on renal Na, K-ATPase activity. The study was performed in male Wistar rats. The animals were anaesthetized with pentobarbital and investigated drugs were infused through the catheter inserted into the abdominal aorta. Na+,K+-ATPase activity was assayed in an isolated microsomal fraction of the renal cortex and medulla. Cell-permeable cAMP analogue, dibutyryl-cAMP (db-cAMP), dose-dependently stimulated Na+,K+-ATPase in the renal cortex and inhibited in the renal medulla. Maximal stimulation (+38.5%) and inhibition (-46.8%) were observed at a dose of 10(-6) mol/kg/min. Measurement of Na+,K+-ATPase activity at different Na' concentrations revealed that in the renal cortex db-cAMP increased Vmax of the enzyme without any effect on sodium affinity, whereas in the renal medulla decrease in Vmax was accompanied by decreased sodium affinity, evidenced by elevated K(0.5) for sodium. The effect of db-cAMP was mimicked by the infusion of either adenylate cyclase activator, forskolin, or inhibitor of phosphodiesterase, IBMX. Both stimulatory and inhibitory effects of db-cAMP were prevented by pretreatment with protein kinase A inhibitor, KT 5720 (10(-8) mol/kg/min) but not by inhibitor of protein kinase G, KT 5823. The inhibitory effect in the renal medulla was partially blocked by pretreatment with either ethoxyresorufin or 17-ODYA - two nonspecific inhibitors of cytochrome P450-dependent arachidonate metabolism, whereas an inhibitor of epoxygenase, miconazole, was not effective. Infusion of 20-hydroxyeicosatetraenoic acid (20-HETE) at a dose of 10(-10) mol/kg/min decreased medullary Na+,K+-ATPase activity by 24.2%. Exogenous protein phosphatases inhibitor, okadaic acid (OA, 10(-8) - 10(-7) mol/kg/min) caused dose-dependent decrease in renal medullary Na+,K+-ATPase activity, maximally by 31.9%, but had no effect in the renal cortex. The effects of OA and db-cAMP in the renal medulla were not additive. When OA administration (10(-7) mol/kg/min) was followed by 20-HETE (10(-10) mol/kg/min), medullary Na+,K-ATPase activity decreased by 48.6% and was similar as after db-cAMP. We conclude, that cAMP-PKA pathway activates Na+,K+-ATPase in the renal cortex and inhibits in the renal medulla. The inhibitory effect is partially mediated by cytochrome P450-dependent arachidonate metabolites and possibly also by PKA-dependent inhibition of protein phosphatases.  相似文献   

3.
Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR) and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21-31 days. Chronic nicotine produced a steady membrane depolarization of ~3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV) while the activity of the α1 isoform decreased (-4.4 mV). Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM), measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser(63) and Ser(68). Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM.  相似文献   

4.
Na,K-ATPase is highly sensitive to changes in the redox state, and yet the mechanisms of its redox sensitivity remain unclear. We have explored the possible involvement of S-glutathionylation of the catalytic α subunit in redox-induced responses. For the first time, the presence of S-glutathionylated cysteine residues was shown in the α subunit in duck salt glands, rabbit kidneys, and rat myocardium. Exposure of the Na,K-ATPase to oxidized glutathione (GSSG) resulted in an increase in the number of S-glutathionylated cysteine residues. Increase in S-glutathionylation was associated with dose- and time-dependent suppression of the enzyme function up to its complete inhibition. The enzyme inhibition concurred with S-glutathionylation of the Cys-454, -458, -459, and -244. Upon binding of glutathione to these cysteines, the enzyme was unable to interact with adenine nucleotides. Inhibition of the Na,K-ATPase by GSSG did not occur in the presence of ATP at concentrations above 0.5 mm. Deglutathionylation of the α subunit catalyzed by glutaredoxin or dithiothreitol resulted in restoration of the Na,K-ATPase activity. Oxidation of regulatory cysteines made them inaccessible for glutathionylation but had no profound effect on the enzyme activity. Regulatory S-glutathionylation of the α subunit was induced in rat myocardium in response to hypoxia and was associated with oxidative stress and ATP depletion. S-Glutathionylation was followed by suppression of the Na,K-ATPase activity. The rat α2 isoform was more sensitive to GSSG than the α1 isoform. Our findings imply that regulatory S-glutathionylation of the catalytic subunit plays a key role in the redox-induced regulation of Na,K-ATPase activity.  相似文献   

5.
The effect of the pyridoindole antioxidant stobadine on diabetes-induced changes of Na,K-ATPase, especially those concerning the utilisation of its substrate ATP, was investigated. Sixteen weeks of streptozotocin-induced diabetes (single i.v. dose of streptozotocin; 55 mg/kg) was followed by decrease in the enzyme activity. This effect was emphasised in the presence of higher concentrations of substrate and in the presence of 8 mmol x l(-1) ATP it represented 20%. It might be a consequence of altered functional properties of Na,K-ATPase as suggested by 20% decrease in the V(max) value along with decrease in the K(m) value by 20%. Administration of 0.05% (w/w) stobadine in the diet to diabetic rats improved the function of renal Na,K-ATPase with respect to utilisation of ATP as suggested by significant increase in the enzyme activity in the whole concentration range of ATP investigated as a consequence of V(max) elevation to the level comparable to absolute controls. In conclusion, stobadine may play a positive role in restoring the functional properties of renal Na,K-ATPase, especially concerning the utilisation of energy derived from hydrolysis of ATP, improving thus the maintenance of ionic homeostasis during diabetes.  相似文献   

6.
We have demonstrated that ouabain regulates protein trafficking of the Na/K-ATPase α1 subunit and NHE3 (Na/H exchanger, isoform 3) via ouabain-activated Na/K-ATPase signaling in porcine LLC-PK1 cells. To investigate whether this mechanism is species-specific, ouabain-induced regulation of the α1 subunit and NHE3 as well as transcellular (22)Na(+) transport were compared in three renal proximal tubular cell lines (human HK-2, porcine LLC-PK1, and AAC-19 originated from LLC-PK1 in which the pig α1 was replaced by ouabain-resistant rat α1). Ouabain-induced inhibition of transcellular (22)Na(+) transport is due to an ouabain-induced redistribution of the α1 subunit and NHE3. In LLC-PK1 cells, ouabain also inhibited the endocytic recycling of internalized NHE3, but has no significant effect on recycling of endocytosed α1 subunit. These data indicated that the ouabain-induced redistribution of the α1 subunit and NHE3 is not a species-specific phenomenon, and ouabain-activated Na/K-ATPase signaling influences NHE3 regulation.  相似文献   

7.
We have used a gene transfer system to investigate the relationship between expression of the rat Na,K-ATPase alpha 1 subunit gene and ouabain-resistant Na,K-ATPase activity. A cDNA clone encoding the entire rat Na,K-ATPase alpha 1 subunit was inserted into the expression vector pSV2neo. This construct (pSV2 alpha 1) conferred resistance to 100 microM ouabain to ouabain-sensitive CV-1 cells. Hybridization analysis of transfected clones revealed the presence of both rat-specific and endogenous Na,K-ATPase alpha 1 subunit DNA and mRNA sequences. A single form of highly ouabain-sensitive 86Rb+ uptake was detected in CV-1 cells, whereas two distinct classes of ouabain-inhibitable uptake were observed in transfectants. One class exhibited the high ouabain sensitivity of the endogenous monkey Na,K-ATPase, while the second class showed the reduced ouabain sensitivity characteristic of the rodent renal Na,K-ATPase. Examination of the ouabain-sensitive, sodium-dependent ATPase activity of the transfectants also revealed a low affinity component of Na,K-ATPase activity characteristic of the rodent kidney enzyme. These results suggest that expression of the rat alpha 1 subunit gene is directly responsible for ouabain-resistant Na,K-ATPase activity in transfected CV-1 cells.  相似文献   

8.
9.
The medullary thick ascending limb (MTAL) of the kidney displays structural changes during long term diabetes. After twelve weeks of diabetes, there is controversy over the changes in Na,K-ATPase activity. To observe the long-term changes, we studied MTAL Na,K-ATPase activity and protein expression in diabetic animals 6 (6W) and 12 weeks (12W) after induction of diabetes with streptozotocin. Three groups were studied, one control group, one group 6W after, and one group 12W after induction of diabetes. Membrane fractions from the inner strip of the outer medulla representing MTAL were isolated. Na,K-ATPase activity and western blottings of alpha1- and beta1-subunits were carried out. 6W diabetes resulted in an increase, and 12W in a decrease in the MTAL Na,K-ATPase activity versus the control group (respectively 63.3 +/- 21.2; 7.5 +/- 2.4 and 31.6 +/- 11.4; micromol Pi/mg prot/hr +/- SEM). The Na,K-ATPase subunit expression was increased at 6W, and decreased after 12W, resulting in amounts below control values for both alpha1- and beta1-subunits. Our results confirm a diabetes-induced biphasic time-dependent alteration MTAL Na,K-ATPase activity, supported by similar changes in alpha1 and beta1 Na,K-ATPase subunits-expression.  相似文献   

10.
Low-angle neutron scattering analysis of Na/K-ATPase in detergent solution   总被引:2,自引:0,他引:2  
Purified Na/K-ATPase from guinea pig renal outer medulla has been delipidated and solubilized in Brij 58 (polyoxyethylene ether; C-16, E-20). At a concentration of 2 mg of Brij 58/mg of protein, about one-half the enzyme complement was solubilized and almost 50% of Na/K-ATPase activity was retained by the enzyme-micelle complex. Guinier plots of the neutron scattering profiles yielded no evidence of heterogeneity with respect to subunit composition or the state of aggregation in the solubilized oligomers. Contrast matching with D2O used to obtain estimates of the molecular weight of the micellar form of Na/K-ATPase gave a mean value of 310,000 +/- 42,700, which corresponds to an alpha 2 beta 2 tetramer. A Stuhrmann plot of the neutron scattering data yielded an estimated radius of gyration of 67 A. The Stuhrmann plot also indicated an asymmetrical distribution of neutron scattering density. On the basis of the Stuhrmann plot parameters, the estimated molecular weight, and the radius of gyration, a low-resolution model was formulated of the oligomeric unit of Na/K-ATPase.  相似文献   

11.
The Na(+),K(+)-ATPase catalyzes the active transport of ions. It has two necessary subunits, alpha and beta, but in kidney it is also associated with a 7.4-kDa protein, the gamma subunit. Stable transfection was used to determine the effect of gamma on Na, K-ATPase properties. When isolated from either kidney or transfected cells, alphabetagamma had lower affinities for both Na(+) and K(+) than alphabeta. A post-translational modification of gamma selectively eliminated the effect on Na(+) affinity, suggesting three configurations (alphabeta, alphabetagamma, and alphabetagamma*) conferring different stable properties to Na, K-ATPase. In the nephron, segment-specific differences in Na(+) affinity have been reported that cannot be explained by the known alpha and beta subunit isoforms of Na,K-ATPase. Immunofluorescence was used to detect gamma in rat renal cortex. Cortical ascending limb and some cortical collecting tubules lacked gamma, correlating with higher Na(+) affinities in those segments reported in the literature. Selective expression in different segments of the nephron is consistent with a modulatory role for the gamma subunit in renal physiology.  相似文献   

12.
There are two isozymes of the Na,K-ATPase, which can be purified separately from rat renal medulla and brainstem axolemma. Here the basic kinetic properties of the two Na,K-ATPases have been compared in conditions permitting enzyme turnover. The two isozymes are half-maximally activated at different concentrations of ATP, the axolemma Na,K-ATPase having the higher affinity. They are half-maximally activated by Na+ and K+ at very similar concentrations but show differences in cooperativity toward Na+. The affinities of both isozymes for ATP and Na+ are affected in a qualitatively similar way by variations in the concentration of K+. Both isozymes transport 22Na+ and 42K+ in a ratio close to 3:2 in artificial lipid vesicles. The two isozymes differ most strikingly in the inhibition of ATPase activity by ouabain. The axolemma Na,K-ATPase has a high affinity for ouabain with positive cooperativity, while the renal medulla Na,K-ATPase has a lower affinity with negative cooperativity. It is likely that the cooperativity differences are due to kinetic effects, reflecting different rates of conformation transitions during enzyme turnover. The functional result of the contrasting cooperativities is that the difference in sensitivity to ouabain is amplified.  相似文献   

13.
The endogenous and ouabain-sensitive respiration and Na, K-ATPase activity in the cortex and kidneys medulla of the cold-acclimated male albino rats have been determined. The increase of the respiration rate has been stated to be caused by the Na-pump activation. The obtained changes of Na, K-ATPase activity are supposed to be connected with the regulation of concentration and sodium excretion function of kidneys.  相似文献   

14.
Iron is a key element in cell function; however, its excess in iron overload conditions can be harmful through the generation of reactive oxygen species (ROS) and cell oxidative stress. Activity of Na,K-ATPase has been shown to be implicated in cellular iron uptake and iron modulates the Na,K-ATPase function from different tissues. In this study, we determined the effect of iron overload on Na,K-ATPase activity and established the role that isoforms and conformational states of this enzyme has on this effect. Total blood and membrane preparations from erythrocytes (ghost cells), as well as pig kidney and rat brain cortex, and enterocytes cells (Caco-2) were used. In E1-related subconformations, an enzyme activation effect by iron was observed, and in the E2-related subconformations enzyme inhibition was observed. The enzyme's kinetic parameters were significantly changed only in the Na+ curve in ghost cells. In contrast to Na,K-ATPase α2 and α3 isoforms, activation was not observed for the α1 isoform. In Caco-2 cells, which only contain Na,K-ATPase α1 isoform, the FeCl3 increased the intracellular storage of iron, catalase activity, the production of H2O2 and the expression levels of the α1 isoform. In contrast, iron did not affect lipid peroxidation, GSH content, superoxide dismutase and Na,K-ATPase activities. These results suggest that iron itself modulates Na,K-ATPase and that one or more E1-related subconformations seems to be determinant for the sensitivity of iron modulation through a mechanism in which the involvement of the Na, K-ATPase α3 isoform needs to be further investigated.  相似文献   

15.
The two cell types in the lens, epithelium and fiber, have a very different specific activity of Na,K-ATPase; activity is much higher in the epithelium. However, judged by Western blot, fibers and epithelium express a similar amount of both Na,K-ATPase alpha and beta subunit proteins. Na,K-ATPase protein abundance does not tally with Na,K-ATPase activity. Studies were conducted to examine whether protein synthesis plays a role in maintenance of the high Na,K-ATPase activity in lens epithelium. An increase of cytoplasmic sodium was found to increase Na,K-ATPase protein expression in the epithelium, but not in the fibers. The findings illustrate the ability of lens epithelium to synthesize new Na,K-ATPase protein as a way to boost Na,K-ATPase in response to cell damage or pathological events. Methionine incorporation studies suggested Na,K-ATPase synthesis may also play a role in day to day preservation of high Na,K-ATPase activity. Na,K-ATPase protein in lens epithelial cells appeared to be continually synthesized and degraded. Experiments with cycloheximide suggest that specific activity of Na,K-ATPase in the lens epithelium may depend on the ability of the cells to continuously synthesize fresh Na,K-ATPase proteins. However, other factors such as phosphorylation of Na,K-ATPase alpha subunit may also influence Na,K-ATPase activity. When intact lenses were exposed to the agonist thrombin, Na,K-ATPase activity was diminished, but the response was suppressed by inhibitors of the Src family of non-receptor tyrosine kinases. Thrombin elicited tyrosine phosphorylation of lens epithelium membrane proteins, including a 100 kDa protein band thought to be the Na,K-ATPase alpha 1 subunit. It remains to be determined whether a tyrosine phosphorylation mechanism contributes to the low activity of Na,K-ATPase in lens fibers.  相似文献   

16.
The murine renal Na,K-ATPase is resistant to cardiac glycosides. It is not yet known however whether altered active transport is associated with the drug-resistance. To investigate this problem Na,K-ATPases were purified from the outer medulla of both rat and rabbit kidneys and reconstituted identically into liposomes. The Na-stimulation of the Na,K-ATPase activity before reconstitution and of the Na-transport after reconstitution was measured. A Na-defect inherent in the ouabain-resistant rat Na,K-ATPase was discovered indicating a link between the cardiac glycoside sensitivity and the Na-transport.  相似文献   

17.
Several functional properties of Na,K-ATPase are strongly dependent on membrane fatty acid composition, but the underlying mechanism is still not well defined. We have studied the effects of two types of supplementations enriched in the w3 polyunsaturated fatty acids on the Na,K-ATPase and Mg-ATPase activities in sciatic nerve (SN) and red blood cells (RBC). Eight groups of rats, controls and diabetics, received a standard diet, supplemented or not with 30 or 60 mg/kg/day of docosahexaenoic acid (DHA) or with soybean for eight weeks. Diabetes induced significant decrease of Na,K-ATPase activity in SN (-23%) and RBC (-25%), without affecting Mg-ATPase activity. In RBC, soybean and DHA supplementations caused significant increases in Na,K-ATPase activity (in various range, +13% to +145%) in all groups, and in Mg-ATPase activity in control soybean (+65%), control and diabetic DHA high dose (+39%, +53%) and diabetic DHA low dose (+131%) groups. In SN, the soybean caused a significant decrease in Na,K-ATPase activity (-26%) and still more in the diabetic group (-53%). The DHA diet induced a slight decrease in activity in control groups, whilst during diabetes, at high dose, we noted an aggravation of this decrease (-36%). Mg-ATPase activity was not modified by supplementations except for the low dose of DHA where the activity was slightly decreased in the control group (-16%). The supplementations induced multiple tissue-specific modifications in the membrane fatty acid composition of RBC and of SN homogenates. Several specific correlations have been found between variations in fatty acids amounts and Na,K-ATPase activity in these tissues but only in RBC for Mg-ATPase activity. Indeed, we observed that the variations in Na,K-ATPase activity are positively and significantly correlated with changes in the omega6/omega3 ratio in SN as well as in RBC. These data clearly show, for the first time, that the diet could modulate the Na,K-ATPase activity via the omega6/omega3 ratio in the membranes. A similar correlation was observed with Mg-ATPase activity in RBC, suggesting also a dietary regulation of the enzyme; but for the SN, this activity might be regulated by a different omega6/omega3 ratio or by another pathway.  相似文献   

18.
An isozyme-specific domain of the catalytic subunit of the Na,K-ATPase has been identified using a monoclonal antibody, McK1. The antibody's specificity was confirmed by its ability to stain proteolytic fingerprints of the Na,K-ATPase. The antibody recognized the alpha I isozyme of the rat Na,K-ATPase, but not the alpha II or alpha III isozymes. It recognized native and sodium dodecyl sulfate-denatured Na,K-ATPase and specifically stained basolateral membranes of the renal tubule. It bound to rat alpha I with highest affinity, but also cross-reacted with mouse, monkey, and human alpha I. It did not cross-react with sheep, pig, chicken, Torpedo, or dog alpha I. Fine specificity mapping was used to deduce the most likely antibody binding sites, based on comparison of eight amino acid sequences from cDNA clones. Two potential binding sites were found at widely separated locations. Limited tryptic digestion of the native enzyme was then used to demonstrate that the binding site was close to the N-terminal end of the Na,K-ATPase. The binding site is predicted to include the following essential amino acid sequence: Asp-Lys-Lys-Ser-Lys-Lys in rat alpha I or Asp-Lys-Lys-Gly-Lys-Lys in human alpha I. The antibody was found to bind to opened, but not to sealed right-side-out vesicles isolated from the rat renal medulla, demonstrating that the N-terminal end of the Na,K-ATPase is exposed at the interior of the cell.  相似文献   

19.
Our original attempt was to examine whether inhibition of Na/H exchange in proximal tubule would affect the expression of basolateral membrane protein Na,K-ATPase. Three amiloride analogues were tested within the range of 10(-6) M to 10(-4) M in primary cultures of proximal tubule cells. Only ethylisopropyl amiloride (EIPA) dose-dependently downregulated Na,K-ATPase activity in cultured proximal tubule cells. The time course study revealed that EIPA (10(-4) M) significantly decreased Na,K-ATPase alpha- and alpha-mRNA abundance within 4 hr and suppressed Na,K-ATPase alpha- and beta-mRNA levels by 76.3 +/- 4.5% and 85.5 +/- 5.8%, respectively, within 24 hr. The decrease in Na,K-ATPase mRNA was followed by a decrease in Na,K-ATPase activity by 22.5 +/- 10.8% and 48.8 +/- 5.9% within 12 and 24 hr, respectively, which could be reflected by a coordinate decrease in levels of both alpha- and mature beta-protein. The cell viability was not affected until 20 hr of EIPA treatment, when an increase in LDH release and cell detachment was observed. Because EIPA rapidly decreased intracellular pH (pHi) to 6.7 within 2 hr and raising pHi to 6.6 by metabolic acidosis could not elicit changes in Na,K-ATPase activity, EIPA-induced downregulation of Na,K-ATPase should not be mediated through H+. In view of the time course of EIPA effects on Na,K-ATPase subunit mRNA, protein, activity and cell toxicity, the cytotoxic effect is likely resulted from a decrease in Na,K-ATPase activity. Take together, we conclude that EIPA induces downregulation of Na,K-ATPase expression via both pre- and post-translational mechanisms, which confers cytotoxic effects on proximal tubule cells.  相似文献   

20.
The aldosterone binding in isolated distal convoluted and cortical collecting tubules of renal nephrons and the influence of hormonal induction on the Na, K-ATPase activity in membrane fraction of kidney cortex were studied in 10-day- and 2-month-old rats. No reliable difference in aldosterone-specific binding was revealed (0.26 +/- 0.04 and 0.22 +/- 0.03 fmol/mm of tubule length, respectively, at the age of 10 days and 2 months). It was found that Na, K-ATPase activity increased with age from 0.39 +/- 0.06 to 0.72 +/- 0.10 mumol Pi/mg of protein.1 hour.100 microliters. Aldosterone induction caused approximately a 3-fold increase of the enzyme activity in both age groups comparing to the control level. Co-induction of aldosterone and spironolactone resulted in a 50% decrease of Na, K-ATPase activity in adult rats, but did not influence that in young rats. The revealed age-related differences in the mechanism of hormonal Na, K-ATPase regulation are supposed to underlie the absence of physiological reaction of the kidney to aldosterone in early postnatal ontogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号