首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Transforming growth factor-beta (TGF-beta) has been shown to both inhibit and to stimulate bone resorption and osteoclastogenesis. This may be due, in part, to differential effects on bone marrow stromal cells that support osteoclastogenesis vs. direct effects on osteoclastic precursor cells. In the present study, we used the murine monocytic cell line, RAW 264.7, to define direct effects of TGF-beta on pre-osteoclastic cells. In the presence of macrophage-colony stimulating factor (M-CSF) (20 ng/ml) and receptor activator of NF-kappaB ligand (RANK-L) (50 ng/ml), TGF-beta1 (0.01-5 ng/ml) dose-dependently stimulated (by up to 120-fold) osteoclast formation (assessed by the presence of tartrate-resistant acid phosphatase (TRAP) positive multinucleated cells and expression of calcitonin and vitronectin receptors). In addition, TGF-beta1 also increased steady state RANK mRNA levels in a time- (by up to 3.5-fold at 48 h) and dose-dependent manner (by up to 2.2-fold at 10 ng/ml). TGF-beta1 induction of RANK mRNA levels was present both in undifferentiated RAW cells as well as in cells that had been induced to differentiate into osteoclasts by a 7-day treatment with M-CSF and RANK-L. Using a fluorescence-labeled RANK-L probe, we also demonstrated by flow cytometry that TGF-beta1 resulted in a significant increase in the percentage of RANK+ RAW cells (P < 0.05), as well as an increase in the fluorescence intensity per cell (P < 0.05), the latter consistent with an increase in RANK protein expression per cell. These data thus indicate that TGF-beta directly stimulates osteoclastic differentiation, and this is accompanied by increased RANK mRNA and protein expression.  相似文献   

2.
Heterotopic ossification (HO) is a disabling condition associated with neurologic injury, inflammation, and overactive bone morphogenetic protein (BMP) signaling. The inductive factors involved in lesion formation are unknown. We found that the expression of the neuro-inflammatory factor Substance P (SP) is dramatically increased in early lesional tissue in patients who have either fibrodysplasia ossificans progressiva (FOP) or acquired HO, and in three independent mouse models of HO. In Nse-BMP4, a mouse model of HO, robust HO forms in response to tissue injury; however, null mutations of the preprotachykinin (PPT) gene encoding SP prevent HO. Importantly, ablation of SP(+) sensory neurons, treatment with an antagonist of SP receptor NK1r, deletion of NK1r gene, or genetic down-regulation of NK1r-expressing mast cells also profoundly inhibit injury-induced HO. These observations establish a potent neuro-inflammatory induction and amplification circuit for BMP-dependent HO lesion formation, and identify novel molecular targets for prevention of HO.  相似文献   

3.
4.

Background

Activin receptor 2 (ACVR2) is commonly mutated in microsatellite unstable (MSI) colon cancers, leading to protein loss, signaling disruption, and larger tumors. Here, we examined activin signaling disruption in microsatellite stable (MSS) colon cancers.

Methods

Fifty-one population-based MSS colon cancers were assessed for ACVR1, ACVR2 and pSMAD2 protein. Consensus mutation-prone portions of ACVR2 were sequenced in primary cancers and all exons in colon cancer cell lines. Loss of heterozygosity (LOH) was evaluated for ACVR2 and ACVR1, and ACVR2 promoter methylation by methylation-specific PCR and bisulfite sequencing and chromosomal instability (CIN) phenotype via fluorescent LOH analysis of 3 duplicate markers. ACVR2 promoter methylation and ACVR2 expression were assessed in colon cancer cell lines via qPCR and IP-Western blots. Re-expression of ACVR2 after demethylation with 5-aza-2′-deoxycytidine (5-Aza) was determined. An additional 26 MSS colon cancers were assessed for ACVR2 loss and its mechanism, and ACVR2 loss in all tested cancers correlated with clinicopathological criteria.

Results

Of 51 MSS colon tumors, 7(14%) lost ACVR2, 2 (4%) ACVR1, and 5(10%) pSMAD2 expression. No somatic ACVR2 mutations were detected. Loss of ACVR2 expression was associated with LOH at ACVR2 (p<0.001) and ACVR2 promoter hypermethylation (p<0.05). ACVR2 LOH, but not promoter hypermethylation, correlated with CIN status. In colon cancer cell lines with fully methylated ACVR2 promoter, loss of ACVR2 mRNA and protein expression was restored with 5-Aza treatment. Loss of ACVR2 was associated with an increase in primary colon cancer volume (p<0.05).

Conclusions

Only a small percentage of MSS colon cancers lose expression of activin signaling members. ACVR2 loss occurs through LOH and ACVR2 promoter hypermethylation, revealing distinct mechanisms for ACVR2 inactivation in both MSI and MSS subtypes of colon cancer.  相似文献   

5.
BACKGROUND INFORMATION: FLRG (follistatin-related gene) is a secreted glycoprotein that is highly homologous with follistatin. These proteins are involved in the regulation of various biological effects mediated by their binding to TGF-beta (transforming growth factor-beta) superfamily members, activin A and bone morphogenetic proteins. To characterize further the function of FLRG, we used a yeast two-hybrid screen to look for other possible functional partners. RESULTS: We report a direct interaction between the cysteine-rich domain of FLRG and ADAM12 (a disintegrin and metalloprotease 12). ADAMs are metalloprotease-disintegrin proteins that have been implicated in cell adhesion, protein ectodomain shedding, matrix protein degradation and cell fusion. Several studies have reported that ADAM12 protein, as well as activin A, are important regulators of osteoclast differentiation. We observed that the expressions of ADAM12 and activin A are modulated during osteoclast formation, whereas the FLRG expression seemed to remain quite constant. We showed that the FLRG protein inhibits osteoclast differentiation from murine primary spleen cells and macrophage RAW264.7 cells cultured in the presence of RANK-L (receptor activator of nuclear factor kappaB ligand) and M-CSF (macrophage colony-stimulating factor). Addition of FLRG protein to precursors significantly reduces the number of osteoclasts, as well as the average number of nuclei in each osteoclast. CONCLUSIONS: Our study indicates that the FLRG protein may contribute to bone formation by inhibiting osteoclast differentiation.  相似文献   

6.
Physical interaction between the cell surface receptors CD47 and signal regulatory protein alpha (SIRPalpha) was reported to regulate cell migration, phagocytosis, cytokine production, and macrophage fusion. However, it is unclear if the CD47/SIRPalpha-interaction can also regulate macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-stimulated formation of osteoclasts. Here, we show that functional blocking antibodies to either CD47 or SIRPalpha strongly reduced formation of multinucleated tartrate-resistant acid phosphatase (TRAP)+ osteoclasts in cultures of murine hematopoietic cells, stimulated in vitro by M-CSF and RANKL. In addition, the numbers of osteoclasts formed in M-CSF/RANKL-stimulated bone marrow macrophage cultures from CD47-/- mice were strongly reduced, and bones of CD47-/- mice exhibited significantly reduced osteoclast numbers, as compared with wild-type controls. We conclude that the CD47/SIRPalpha interaction is important for M-CSF/RANKL-stimulated osteoclast formation both in vivo and in vitro, and that absence of CD47 results in decreased numbers of osteoclasts in CD47-/- mice.  相似文献   

7.
Interleukin-1alpha (IL-1alpha) is one of the most potent bone-resorbing factors involved in the bone loss that is associated with inflammation. We examined the effect of the inflammatory mediator IL-1alpha on the expression of macrophage colony-stimulating factor (M-CSF), osteoprotegerin (OPG), and prostaglandin E2 (PGE2) in rat osteoblasts, and the indirect effect of IL-1alpha on the formation of osteoclast-like cells. Osteoblasts were cultured in alpha-minimum essential medium containing 10% fetal bovine serum with or without 100 units/ml of IL-1alpha for up to 14 days. The gene and protein expression of M-CSF and OPG were estimated by determining mRNA levels using the real-time polymerase chain reaction and protein levels using Western blot analysis. PGE2 expression was determined using an enzyme-linked immunosorbent assay. The formation of osteoclast-like cells was estimated using tartrate-resistant acid phosphatase (TRAP) staining of osteoclast precursors in culture with conditioned medium from IL-1alpha-treated osteoblasts and the soluble receptor activator of NF-kappaB ligand (RANKL). M-CSF and PGE2 expression in osteoblasts increased markedly in cells cultured with IL-1alpha, whereas OPG expression decreased. The conditioned medium containing M-CSF and PGE2 produced by IL-1alpha-treated osteoblasts and soluble RANKL increased the TRAP staining of osteoclast precursors. These results suggest that IL-1alpha stimulated the formation of osteoclast-like cells via an increase in M-CSF and PGE2 production, and a decrease in OPG production by osteoblasts.  相似文献   

8.
Fibrodysplasia ossificans progressiva (FOP; MIM #135100) is a debilitating genetic disorder of connective tissue metamorphosis. It is characterized by malformation of the great (big) toes during embryonic skeletal development and by progressive heterotopic endochondral ossification (HEO) postnatally, which leads to the formation of a second skeleton of heterotopic bone. Individuals with these classic clinical features of FOP have the identical heterozygous activating mutation (c.617G>A; R206H) in the gene encoding ACVR1 (also known as ALK2), a bone morphogenetic protein (BMP) type I receptor. Disease activity caused by this ACVR1 mutation also depends on altered cell and tissue physiology that can be best understood in the context of a high-fidelity animal model. Recently, we developed such a knock-in mouse model for FOP (Acvr1R206H/+) that recapitulates the human disease, and provides a valuable new tool for testing and developing effective therapies. The FOP knock-in mouse and other models in Drosophila, zebrafish, chickens and mice provide an arsenal of tools for understanding BMP signaling and addressing outstanding questions of disease mechanisms that are relevant not only to FOP but also to a wide variety of disorders associated with regenerative medicine and tissue metamorphosis.  相似文献   

9.
The receptor activator of NF-kappaB (RANK) belongs to the neuregulin/tumor necrosis factor (TNF) receptor superfamily and is activated by RANK ligand (RANK-L), a homotrimeric, TNF-like cytokine. RANK is present on the surface of osteoclast cell precursors, where its interaction with RANK-L induces their terminal differentiation into osteoclasts, thus increasing bone breakdown. The secreted, soluble receptor osteoprotegerin (OPG) interrupts this activation by binding directly to RANK-L. Therefore, osteoclast maturation (and bone homeostasis) is regulated in vivo by OPG levels of expression. We have studied the assembly state and affinity of OPG for RANK-L by sedimentation analyses and surface plasmon resonance (Biacore). Full-length, homodimeric OPG binds to RANK-L with a KD of 10 nM. OPG is also a member of the TNF receptor superfamily and contains four disulfide-rich ligand-binding domains, yet lacks a transmembrane region separating the ligand-binding region from the two death domains, as observed for other receptor family members. We showed that dimerization of OPG results from noncovalent interactions mediated by the death domains and to a lesser extent by a C-terminal heparin-binding region. In contrast, a C-terminal intermolecular disulfide bond does not contribute to the formation or stability of OPG dimers. A truncate of osteoprotegerin, containing the ligand-binding domains but lacking the dimerization domains, bound RANK-L with a KD of approximately 3 microM, indicating that monomer oligomerization for the OPG provides an increase of 3 orders of magnitude in the affinity for RANK-L. Therefore, OPG dimer formation is required for the mechanism of inhibition of the RANK-L/RANK receptor interaction.  相似文献   

10.
11.
Fibrodysplasia ossificans progressiva (FOP), a rare genetic and catastrophic disorder characterized by progressive heterotopic ossification, is caused by a point mutation, c.617G>A; p.R206H, in the activin A receptor type 1 (ACVR1) gene, one of the bone morphogenetic protein type I receptors (BMPR-Is). Although altered BMP signaling has been suggested to explain the pathogenesis, the molecular consequences of this mutation are still elusive. Here we studied the impact of ACVR1 R206H mutation on BMP signaling and its downstream signaling cascades in murine myogenic C2C12 cells and HEK 293 cells. We found that ACVR1 was the most abundant of the BMPR-Is expressed in mesenchymal cells but its contribution to osteogenic BMP signal transduction was minor. The R206H mutant caused weak activation of the BMP signaling pathway, unlike the Q207D mutant, a strong and constitutively active form. The R206H mutant showed a decreased binding affinity for FKBP1A/FKBP12, a known safeguard molecule against the leakage of transforming growth factor (TGF)-β or BMP signaling. The decreased binding affinity of FKBP1A to the mutant R206H ACVR1 resulted in leaky activation of the BMP signal, and moreover, it decreased steady-state R206H ACVR1 protein levels. Interestingly, while WT ACVR1 and FKBP1A were broadly distributed in plasma membrane and cytoplasm without BMP-2 stimulation and then localized in plasma membrane on BMP-2 stimulation, R206H ACVR1 and FKBP1A were mainly distributed in plasma membrane regardless of BMP-2 stimulation. The impaired binding to FKBP1A and an altered subcellular distribution by R206H ACVR1 mutation may result in mild activation of osteogenic BMP-signaling in extraskeletal sites such as muscle, which eventually lead to delayed and progressive ectopic bone formation in FOP patients.  相似文献   

12.
13.
Osteoclastic activity induces osteomodulin expression in osteoblasts   总被引:2,自引:0,他引:2  
Bone resorption by osteoclasts stimulates bone formation by osteoblasts. To isolate osteoblastic factors coupled with osteoclast activity, we performed microarray and cluster analysis of 8 tissues including bone, and found that among 10,490 genes, osteomodulin (OMD), an extracellular matrix keratan sulfate proteoglycan, was simultaneously induced with osteoclast-specific markers such as MMP9 and Acp5. OMD expression was detected in osteoblasts and upregulated during osteoblast maturation. OMD expression in osteoblasts was also detected immunohistochemically using a specific antibody against OMD. The immunoreactivity against OMD decreased in op/op mice, which lack functional macrophage colony stimulating factor (M-CSF) and are therefore defective in osteoclast formation, when compared to wild-type littermates. OMD expression in op/op mice was upregulated by M-CSF treatment. Since the M-CSF receptor c-Fms was not expressed in osteoblasts, it is likely that OMD is an osteoblast maturation marker that is induced by osteoclast activity.  相似文献   

14.
Osteoclast differentiation factor (ODF), a novel member of the TNF ligand family, is expressed as a membrane-associated protein by osteoblasts/stromal cells. The soluble form of ODF (sODF) induces the differentiation of osteoclast precursors into osteoclasts in the presence of M-CSF. Here, the effects of sODF on the survival, multinucleation, and pit-forming activity of murine osteoclasts were examined in comparison with those of M-CSF and IL-1. Osteoclast-like cells (OCLs) formed in cocultures of murine osteoblasts and bone marrow cells expressed mRNA of RANK (receptor activator of NF-kappaB), a receptor of ODF. The survival of OCLs was enhanced by the addition of each of sODF, M-CSF, and IL-1. sODF, as well as IL-1, activated NF-kappaB and c-Jun N-terminal protein kinase (JNK) in OCLs. Like M-CSF and IL-1, sODF stimulated the survival and multinucleation of prefusion osteoclasts (pOCs) isolated from the coculture. When pOCs were cultured on dentine slices, resorption pits were formed on the slices in the presence of either sODF or IL-1 but not in that of M-CSF. A soluble form of RANK as well as osteoprotegerin/osteoclastogenesis inhibitory factor, a decoy receptor of ODF, blocked OCL formation and prevented the survival, multinucleation, and pit-forming activity of pOCs induced by sODF. These results suggest that ODF regulates not only osteoclast differentiation but also osteoclast function in mice through the receptor RANK.  相似文献   

15.
The increased bone resorption observed after estrogen withdrawal is responsible for bone loss and may lead to osteoporosis. The mechanism by which estradiol inhibits bone resorption is known to involve decreased osteoclastogenesis, however, the effect on osteoclast adhesion remains unclear. We examined the in vitro effect of estradiol and raloxifene on human osteoclast differentiation and function. Human peripheral blood mononuclear cells were cultured with M-CSF/RANK-L for 18 days, and we evaluated bone resorption, the expression of the protein and mRNA of the integrins, c-jun and c-fos in the presence or absence of estradiol. In this human model, beta3-integrin expression increased at the mRNA and protein levels during osteoclast differentiation, whereas that of beta5-integrin did not. We found that estradiol and raloxifene directly inhibited bone resorption on bone slices by 50%, and decreased the expression of beta3-integrin mRNA (60%) and protein (20%) in a time-dependent manner. Moreover, the mRNAs of c-fos and c-jun were both diminished by estradiol and raloxifene, particularly in early osteoclasts, but also to a lesser extent in mature cells. These findings suggest that the direct inhibitory action of estradiol on bone resorption may affect human osteoclast differentiation through downregulation of c-fos and c-jun and adhesion through modulation of beta3-integrin.  相似文献   

16.
Fibrodysplasia ossificans progressiva (FOP) is a rare heritable disease characterized by progressive heterotopic ossification of connective tissues, for which there is presently no definite treatment. A recurrent activating mutation (c.617G→A; R206H) of activin receptor-like kinase 2 (ACVR1/ALK2), a BMP type I receptor, has been shown as the main cause of FOP. This mutation constitutively activates the BMP signaling pathway and initiates the formation of heterotopic bone. In this study, we have designed antisense oligonucleotides (AONs) to knockdown mouse ALK2 expression by means of exon skipping. The ALK2 AON could induce exon skipping in cells, which was accompanied by decreased ALK2 mRNA levels and impaired BMP signaling. In addition, the ALK2 AON potentiated muscle differentiation and repressed BMP6-induced osteoblast differentiation. Our results therefore provide a potential therapeutic approach for the treatment of FOP disease by reducing the excessive ALK2 activity in FOP patients.  相似文献   

17.
Fibrodysplasia ossificans progressiva (FOP) and diffuse intrinsic pontine glioma (DIPG) are debilitating diseases that share causal mutations in ACVR1, a TGF‐β family type I receptor. ACVR1R206H is a frequent mutation in both diseases. Pathogenic signaling via the SMAD1/5 pathway is mediated by Activin A, but how the mutation triggers aberrant signaling is not known. We show that ACVR1 is essential for Activin A‐mediated SMAD1/5 phosphorylation and is activated by two distinct mechanisms. Wild‐type ACVR1 is activated by the Activin type I receptors, ACVR1B/C. In contrast, ACVR1R206H activation does not require upstream kinases, but is predominantly activated via Activin A‐dependent receptor clustering, which induces its auto‐activation. We use optogenetics and live‐imaging approaches to demonstrate Activin A‐induced receptor clustering and show it requires the type II receptors ACVR2A/B. Our data provide molecular mechanistic insight into the pathogenesis of FOP and DIPG by linking the causal activating genetic mutation to disrupted signaling.  相似文献   

18.
While it has been assumed that osteoblasts in the human support osteoclast formation, in vitro evidence of this is currently lacking. We tested the ability of normal human trabecular bone-derived osteoblasts (NHBCs) to support osteoclast formation from human peripheral blood mononuclear cells (PBMC) in response to treatment with either 1alpha,25-dihydroxyvitamin D3 (1,25D) or parathyroid hormone (PTH), using a serum-replete medium previously used to support human osteoclast formation on a stroma of murine ST-2 cells. Under these conditions, NHBC did not support osteoclast formation, as assessed by morphological, histochemical, and functional criteria, despite our previous results demonstrating a link between induction of RANKL mRNA expression and NHBC phenotype in these media. We next tested a defined, serum-free medium (SDM) on NHBC phenotype, their expression of RANKL and OPG, and their ability to support osteoclast formation. SDM, containing dexamethasone (DEX) and 1,25D, induced phenotypic maturation of NHBC, based on the expression of STRO-1 and the bone/liver/kidney isoform of alkaline phosphatase (AP). PTH as a single factor did not induce phenotypic change. 1,25D and DEX induced the greatest ratio of RANKL:OPG mRNA, predictive of supporting osteoclast formation. Consistent with this, co-culture of NHBC with CD14+ PBMC, or bone marrow mononuclear cell (BMMC), or CD34+ BMMC precursors in SDM + 1,25D + DEX, resulted in functional osteoclast formation. Osteoclast formation also occurred in PTH + DEX stimulated co-cultures. Interestingly, SDM supplemented with recombinant RANKL (25-100 ng/ml) and M-CSF (25 ng/ml), did not induce osteoclast formation from any of the osteoclast precursor populations in stromal-free cultures, unlike serum-replete medium. This study demonstrates that under the appropriate conditions, adult human primary osteoblasts can support de novo osteoclast formation, and this model will enable the detailed study of the role of both cell types in this process.  相似文献   

19.
Regulation of FSH receptor promoter activation in the osteoclast   总被引:1,自引:0,他引:1  
We have shown recently that FSH stimulates osteoclast formation and function by a direct action on a G(i)-coupled FSH receptor (FSHR). Here, we report properties of the mouse FSH receptor promoter in the context of its activation in RAW-C3 osteoclast precursor macrophages. Basal promoter activity was low, but was significantly stimulated by receptor activator for NF-kappaB-ligand (RANK-L), a critical osteoclastogenic and pro-resorptive cytokine. In contrast, FSH dampened FSHR promoter activation, while estrogen had no effect. We surmise that the FSHR expression is regulated distinctly in the osteoclast, and differently from other cells, such as the ovarian follicular and Leydig cells.  相似文献   

20.
Several studies have indicated that one of the causes of alveolar bone destruction with periodontitis is lipopolysaccharide (LPS) from the cell wall of Gram-negative bacteria in plaque and that tobacco smoking may be an important risk factor for the development and severity of periodontitis. The present study was undertaken to determine the effect of nicotine and LPS on the expression of macrophage colony-stimulating factor (M-CSF), osteoprotegerin (OPG), and prostaglandin E2 (PGE2) in osteoblasts, and the indirect effect of nicotine and LPS on the formation of osteoclast-like cells. Saos-2 cells were cultured with 10(-3) M nicotine, or 1 or 10 microg/ml LPS and 10(-3) M nicotine, for up to 14 days. The gene and protein expression of M-CSF and OPG were determined using real-time PCR and ELISA, respectively. PGE2 expression was determined using ELISA. The formation of osteoclast-like cells was estimated using tartrate-resistant acid phosphatase (TRAP) staining of osteoclast precursors in culture with conditioned medium from nicotine and LPS-treated Saos-2 cells and the soluble receptor activator of NF-kappaB ligand (RANKL). M-CSF and PGE2 expression increased markedly in cells cultured with nicotine and LPS compared with those cultured with nicotine alone. OPG expression increased in the initial stages of culture with nicotine and LPS but decreased in the later stages of culture. The conditioned medium containing M-CSF and PGE2 produced by nicotine and LPS-treated Saos-2 cells with soluble RANKL increased the TRAP staining of osteoclast precursors compared with that produced by nicotine treatment alone. These results suggest that nicotine and LPS stimulate the formation of osteoclast-like cells via an increase in M-CSF and PGE2 production and that the stimulation is greater than with nicotine treatment alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号