共查询到20条相似文献,搜索用时 0 毫秒
1.
Luca Tadini Fabio Rossi Simona Masiero Mathias Pribil Peter Jahns Martin Kater Dario Leister Paolo Pesaresi 《The Plant journal : for cell and molecular biology》2012,72(6):922-934
A lack of individual plastid ribosomal proteins (PRPs) can have diverse phenotypic effects in Arabidopsis thaliana, ranging from embryo lethality to compromised vitality, with the latter being associated with photosynthetic lesions and decreases in the expression of plastid proteins. In this study, reverse genetics was employed to study the function of eight PRPs, five of which (PRPS1, ‐S20, ‐L27, ‐L28 and ‐L35) have not been functionally characterised before. In the case of PRPS17, only leaky alleles or RNA interference lines had been analysed previously. PRPL1 and PRPL4 have been described as essential for embryo development, but their mutant phenotypes are analysed in detail here. We found that PRPS20, ‐L1, ‐L4, ‐L27 and ‐L35 are required for basal ribosome activity, which becomes crucial at the globular stage and during the transition from the globular to the heart stage of embryogenesis. Thus, lack of any of these PRPs leads to alterations in cell division patterns, and embryo development ceases prior to the heart stage. PRPL28 is essential at the latest stages of embryo–seedling development, during the greening process. PRPS1, ‐S17 and ‐L24 appear not to be required for basal ribosome activity and the organism can complete its entire life cycle in their absence. Interestingly, despite the prokaryotic origin of plastids, the significance of individual PRPs for plant development cannot be predicted from the relative phenotypic severity of the corresponding mutants in prokaryotic systems. 相似文献
2.
The role of human ribosomal proteins in the maturation of rRNA and ribosome production 总被引:2,自引:0,他引:2
Robledo S Idol RA Crimmins DL Ladenson JH Mason PJ Bessler M 《RNA (New York, N.Y.)》2008,14(9):1918-1929
Production of ribosomes is a fundamental process that occurs in all dividing cells. It is a complex process consisting of the coordinated synthesis and assembly of four ribosomal RNAs (rRNA) with about 80 ribosomal proteins (r-proteins) involving more than 150 nonribosomal proteins and other factors. Diamond Blackfan anemia (DBA) is an inherited red cell aplasia caused by mutations in one of several r-proteins. How defects in r-proteins, essential for proliferation in all cells, lead to a human disease with a specific defect in red cell development is unknown. Here, we investigated the role of r-proteins in ribosome biogenesis in order to find out whether those mutated in DBA have any similarities. We depleted HeLa cells using siRNA for several individual r-proteins of the small (RPS6, RPS7, RPS15, RPS16, RPS17, RPS19, RPS24, RPS25, RPS28) or large subunit (RPL5, RPL7, RPL11, RPL14, RPL26, RPL35a) and studied the effect on rRNA processing and ribosome production. Depleting r-proteins in one of the subunits caused, with a few exceptions, a decrease in all r-proteins of the same subunit and a decrease in the corresponding subunit, fully assembled ribosomes, and polysomes. R-protein depletion, with a few exceptions, led to the accumulation of specific rRNA precursors, highlighting their individual roles in rRNA processing. Depletion of r-proteins mutated in DBA always compromised ribosome biogenesis while affecting either subunit and disturbing rRNA processing at different levels, indicating that the rate of ribosome production rather than a specific step in ribosome biogenesis is critical in patients with DBA. 相似文献
3.
The plastid-specific ribosomal proteins of Arabidopsis thaliana can be divided into non-essential proteins and genuine ribosomal proteins 总被引:1,自引:0,他引:1
Tiller N Weingartner M Thiele W Maximova E Schöttler MA Bock R 《The Plant journal : for cell and molecular biology》2012,69(2):302-316
Plastid translation occurs on bacterial-type 70S ribosomes consisting of a large (50S) subunit and a small (30S) subunit. The vast majority of plastid ribosomal proteins have orthologs in bacteria. In addition, plastids also possess a small set of unique ribosomal proteins, so-called plastid-specific ribosomal proteins (PSRPs). The functions of these PSRPs are unknown, but, based on structural studies, it has been proposed that they may represent accessory proteins involved in translational regulation. Here we have investigated the functions of five PSRPs using reverse genetics in the model plant Arabidopsis thaliana. By analyzing T-DNA insertion mutants and RNAi lines, we show that three PSRPs display characteristics of genuine ribosomal proteins, in that down-regulation of their expression led to decreased accumulation of the 30S or 50S subunit of the plastid ribosomes, resulting in plastid translational deficiency. In contrast, two other PSRPs can be knocked out without visible or measurable phenotypic consequences. Our data suggest that PSRPs fall into two types: (i) PSRPs that have a structural role in the ribosome and are bona fide ribosomal proteins, and (ii) non-essential PSRPs that are not required for stable ribosome accumulation and translation under standard greenhouse conditions. 相似文献
4.
Ali Ramezani Hojatolla Nikravesh Ebrahim Faghihloo 《Journal of cellular physiology》2019,234(4):3347-3361
Forkhead box (FOX) proteins play a crucial role in regulating the expression of genes involved in multiple biological processes, such as metabolism, development, differentiation, proliferation, apoptosis, migration, invasion, and longevity. Deregulation of FOX proteins is commonly associated with cancer initiation, progression, and chemotherapeutic drug resistance in many human tumors. FOX proteins deregulate through genetic events and the perturbation of posttranslational modification. The purpose of the present review is to describe the deregulation of FOX proteins by oncoviruses. Oncoviruses utilize various mechanisms to deregulate FOX proteins, including alterations in posttranslational modifications, cellular localization independently of posttranslational modifications, virus-encoded miRNAs, activation or suppression of a series of cell signaling pathways. This deregulation can affect proliferation, metastasis, chemotherapy resistance, and immunosuppression in virus-induced cancers and help to chronic viral infection, development of gluconeogenic responses, and inflammation. Since the PI3K/Akt/mTOR signaling pathway is the upstream FOXO, suppressing it can cause FOXO function to return, and this can be one of the reasons for patients to recover from the infection of the viruses used to treat these inhibitors. Hence, FOX proteins could serve as prognosis markers and target therapy specifically in cancers caused by oncoviruses. 相似文献
5.
Methylation of ribosomal proteins in Tetrahymena pyriformis 总被引:1,自引:0,他引:1
6.
The ribosome, the site for protein synthesis, is composed of ribosomal RNAs (rRNAs) and ribosomal proteins (RPs). The latter have been shown to have many ribosomal and extraribosomal functions. RPs are implicated in a variety of pathological processes, especially tumorigenesis and cell transformation. In this review, we will focus on the recent advances that shed light on the effects of RPs deregulation in different types of cancer and their roles in regulating the tumor cell fate. 相似文献
7.
8.
Yingru Zhi Hao Zhou Abudoureyimu Mubalake Ying Chen Bei Zhang Kai Zhang Xiaoyuan Chu Rui Wang 《Cell proliferation》2018,51(5)
MicroRNAs are small non‐coding RNAs that play critical roles in the regulatory mechanisms involving cell differentiation, proliferation, apoptosis and tumorigenesis. Recent research efforts have been conducted to apply these discoveries into clinical functions, including the early diagnosis and therapeutic outcome of patients with cancer. Previous studies have shown that microRNA‐149 (miR‐149) is dysregulated in various human cancers and exerts its effects on tumorigenesis and tumour progression. In this review, we summarized the potential roles of miR‐149 dysregulation and its target genes during tumorigenesis and clinical treatment of human cancers. 相似文献
9.
Mass spectrometric analysis of the human 40S ribosomal subunit: native and HCV IRES-bound complexes 总被引:1,自引:0,他引:1
Yu Y Ji H Doudna JA Leary JA 《Protein science : a publication of the Protein Society》2005,14(6):1438-1446
Hepatitis C virus uses an internal ribosome entry site (IRES) in the viral RNA to directly recruit human 40S ribosome subunits during cap-independent translation initiation. Although IRES-mediated translation initiation is not subject to many of the regulatory mechanisms that control cap-dependent translation initiation, it is unknown whether other noncanonical protein factors are involved in this process. Thus, a global protein composition analysis of native and IRES-bound 40S ribosomal complexes has been conducted to facilitate an understanding of the IRES ribosome recruitment mechanism. A combined top-down and bottom-up mass spectrometry approach was used to identify both the proteins and their posttranslational modifications (PTMs) in the native 40S subunit and the IRES recruited translation initiation complex. Thirty-one out of a possible 32 ribosomal proteins were identified by combining top-down and bottom-up mass spectrometry techniques. Proteins were found to contain PTMs, including loss of methionine, acetylation, methylation, and disulfide bond formation. In addition to the 40S ribosomal proteins, RACK1 was consistently identified in the 40S fraction, indicating that this protein is associated with the 40S subunit. Similar methodology was then applied to the hepatitis C virus IRES-bound 40S complex. Two 40S ribosomal proteins, RS25 and RS29, were found to contain different PTMs than those in the native 40S subunit. In addition, RACK1, eukaryotic initiation factor 3 proteins and nucleolin were identified in the IRES-mediated translation initiation complex. 相似文献
10.
Human 40S ribosomal subunits were subjected to centrifugation through a 0.3–1.5 M LiCl gradient in 0.5 M KCl, 4 mM MgCl2. Most of the proteins started to dissociate at the initial concentration of monovalent cations (0.8 M); the last to dissociate
at 1.55 M salt were the core proteins S3, S5, S7, S10, S15, S16, S17, S19, S20, and S28; among these, S7, S10, S16, and S19
were the most tightly bound to 18S rRNA. 相似文献
11.
TBC(Tre-2/Bub2/Cdc16)是真核生物中普遍存在的一种由200个氨基酸残基组成的保守性蛋白质结构域,含有该结构域的蛋白质被称为TBC蛋白。TBC蛋白具有GTPase激活活性,可促进小G蛋白Rab-GTP水解为Rab-GDP,从而参与特异的胞内转运过程。在哺乳动物中,部分TBC蛋白具有十分重要的作用,其功能异常与人类疾病的发生发展密切相关。本文主要介绍了哺乳动物TBC蛋白的结构和功能,以及近年来TBC蛋白在人类疾病发生发展中的作用,以期为深入解析TBC蛋白的致病机制提供参考。 相似文献
12.
Numerous ribosomal proteins have a striking bipartite architecture: a globular body positioned on the ribosomal exterior and an internal loop buried deep into the rRNA core. In eukaryotes, a significant number of conserved r-proteins have evolved extra amino- or carboxy-terminal tail sequences, which thread across the solvent-exposed surface. The biological importance of these extended domains remains to be established. In this study, we have investigated the universally conserved internal loop and the eukaryote-specific extensions of yeast L4. We show that in contrast to findings with bacterial L4, deleting the internal loop of yeast L4 causes severely impaired growth and reduced levels of large ribosomal subunits. We further report that while depleting the entire L4 protein blocks early assembly steps in yeast, deletion of only its extended internal loop affects later steps in assembly, revealing a second role for L4 during ribosome biogenesis. Surprisingly, deletion of the entire eukaryote-specific carboxy-terminal tail of L4 has no effect on viability, production of 60S subunits, or translation. These unexpected observations provide impetus to further investigate the functions of ribosomal protein extensions, especially eukaryote-specific examples, in ribosome assembly and function. 相似文献
13.
14.
The structures of two prokaryotic ribosomal proteins, the carboxyterminal half of L7/L12 from Escherichia coli (L12CTF) and L30 from Bacilus stearothermophilus display a remarkably similar fold in which alpha-helices pack onto one side of an antiparallel, three-stranded, beta-pleated sheet. A detailed comparison of the structures by least-squares methods reveals that more than two-thirds of the alpha carbons can be superimposed with a root mean square distance of 2.33 A. The principal difference is an extra alpha-helix in L12CTF. The sequences of the proteins display a distinct conservation in regions which are crucial to the common fold, in particular the hydrophobic core. It is proposed that the similarity is a result of divergent evolution. 相似文献
15.
16.
Yu. S. Khairulina M. V. Molotkov K. N. Bulygin D. M. Graifer A. G. Ven’yaminova G. G. Karpova 《Molecular Biology》2008,42(2):270-276
Protein S15 is a characteristic component of the mammalian 80S ribosome that neighbors the mRNA codon at the decoding site and the downstream triplets. The S15 fragment juxtaposed in the human ribosome to mRNA nucleotides +4 to +12 relative to the first nucleotide of the P-site codon was determined. S15 was modified using a set of mRNA analogs containing the triplet UUU/UUC at the 5′ end and a perfluorophenyl azide-carrying uridine at various positions downstream of this triplet. The mRNA analogs were positioned on the ribosome with the use of tRNAPhe, cognate to the UUU/UUC triplet, targeted to the P site. Modified S15 was isolated from complexes of 80S ribosomes with tRNAPhe and the mRNA analogs after irradiation with mild UV light and hydrolyzed with cyanogen bromide, cleaving the polypeptide chain after Met residues. Analysis of the modified oligopeptides resulting from hydrolysis demonstrated that the crosslinking site was in C-terminal fragment 111–145 of S15 in all cases, suggesting the involvement of this fragment in the decoding site of the eukaryotic ribosome. 相似文献
17.
18.
The nucleotide sequence of a full-length ribosomal P2 protein cDNA from maize was determined and used for a sequence comparison with the P2 and P1 proteins from other organisms. The integration of these data into a phylogenetic tree shows that the P proteins separated into the subspecies P1 and P2 before the eukaryotic kingdoms including plants developed from their ancestor. 相似文献