首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
BackgroundOsteoporosis is a threat to aged people who have excessive osteoclast activation and bone resorption, subsequently causing fracture and even disability. Inhibiting osteoclast differentiation and absorptive functions has become an efficient approach to treat osteoporosis, but osteoclast-targeting inhibitors available clinically remain rare. Kirenol (Kir), a bioactive diterpenoid derived from an antirheumatic Chinese herbal medicine Herba Siegesbeckiae, can treat collagen-induced arthritis in vivo and promote osteoblast differentiation in vitro, while the effects of Kir on osteoclasts are still unclear.PurposeWe explore the role of Kir on RANKL-induced osteoclastogenesis in vitro and bone loss in vivo.MethodsThe in vitro effects of Kir on osteoclast differentiation, bone resorption and the underlying mechanisms were evaluated with bone marrow-derived macrophages (BMMs). In vivo experiments were performed using an ovariectomy (OVX)-induced osteoporosis model.ResultsWe found that Kir remarkably inhibited osteoclast generation and bone resorption in vitro. Mechanistically, Kir significantly inhibited F-actinring formation and repressed RANKL-induced NF-κB p65 activation and p-p38, p-ERK and c-Fos expression. Moreover, Kir inhibited both the expression and nuclear translocation of NFATc1. Ca2+ oscillation and caveolin-1 (Cav-1) were also reduced by Kir during osteoclastogenesis in vitro. Consistent with these findings, 2–10 mg/kg Kir attenuated OVX-induced osteoporosis in vivo as evidenced by decreased osteoclast numbers and downregulated Cav-1 and NFATc1 expression.ConclusionsKir suppresses osteoclastogenesis and the Cav-1/NFATc1 signaling pathway both in vitro and in vivo and protects against OVX-induced osteoporosis. Our findings reveal Kir as a potential safe oral treatment for osteoporosis.  相似文献   

4.
Excessive bone-resorbing osteoclast activity during bone remodeling is a major feature of bone diseases, such as osteoporosis. Therefore, the inhibition of osteoclast formation and bone resorption can be an effective therapeutic target for various bone diseases. Gryllus biomaculatus (GB) has recently been approved as an alternative food source because of its high nutritional value and environmental sustainability. Traditionally, GB has been known to have various pharmacological properties, including antipyretic and blood pressure-lowering activity, and it has recently been reported to have various biological activities, including protective effects against inflammation, oxidative stress, insulin resistance, and alcohol-induced liver injury. However, the effect of GB on osteoclast differentiation and bone metabolism has not yet been demonstrated. In this study, we confirmed the inhibitory effect of GB extract (GBE) on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. To determine the effect of GBE on RANKL-induced osteoclast differentiation and function, we performed TRAP and F-actin staining, as well as a bone-resorbing assay. The intracellular mechanisms of GBE responsible for the regulation of osteoclastogenesis were revealed by Western blot analysis and quantitative real-time polymerase chain reaction. We investigated the relationship between GBE and expression of osteoclast-specific molecules to further elucidate the underlying mechanisms. It was found that GBE significantly suppressed osteoclastogenesis by decreasing the phosphorylation of Akt, p38, JNK, and ERK, as well as Btk-PLCγ2 signaling, in pathways involved in early osteoclastogenesis as well as through the subsequent suppression of c-Fos, NFATc1, and osteoclastogenesis-specific marker genes. Additionally, GBE inhibited the formation of F-actin ring-positive osteoclasts and bone resorption activity of mature osteoclasts. Our findings suggest that GBE is a potential functional food and therapeutic candidate for bone diseases involving osteoclasts.  相似文献   

5.
Osteolysis is characterized by overactivated osteoclast formation and potent bone resorption. It is enhanced in many osteoclast‐related diseases including osteoporosis and periprosthetic osteolysis. The shortage of effective treatments for these pathological processes emphasizes the importance of screening and identifying potential regimens that could attenuate the formation and function of osteoclasts. Dehydrocostus lactone (DHE) is a natural sesquiterpene lactone containing anti‐inflammatory properties. Here, we showed that DHE suppressed receptor activator of nuclear factor‐κB ligand (RANKL)‐induced osteoclast formation and osteoclast marker gene expression. It also inhibited F‐actin ring formation and bone resorption in a dose‐dependent manner in vitro. Moreover, DHE inhibited the RANKL‐induced phosphorylation of NF‐κB, mitigated bone erosion in vivo in lipopolysaccharide‐induced inflammatory bone loss model and particle‐induced calvarial osteolysis model. Together, these results suggest that DHE reduces osteoclast‐related bone loss via the modulation of NF‐κB activation during osteoclastogenesis indicating that it might be a useful treatment for osteoclast‐related skeletal disorders.  相似文献   

6.
Abnormally elevated formation and activation of osteoclasts are primary causes for a majority of skeletal diseases. In this study, we found that KP-A159, a newly synthesized thiazolopyridine derivative, inhibited osteoclast differentiation and function in vitro, and inflammatory bone loss in vivo. KP-A159 did not cause a cytotoxic response in bone marrow macrophages (BMMs), but significantly inhibited the formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts induced by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). KP-A159 also dramatically inhibited the expression of marker genes related to osteoclast differentiation, including TRAP (Acp5), cathepsin K (Ctsk), dendritic cell-specific transmembrane protein (Dcstamp), matrix metallopeptidase 9 (Mmp9), and nuclear factor of activated T-cells, cytoplasmic 1 (Nfatc1). Moreover, actin ring and resorption pit formation were inhibited by KP-A159. Analysis of the signaling pathway involved showed that KP-A159 inhibited RANKL-induced activation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and mitogen-activated protein kinase kinase1/2 (MEK1/2). In a mouse inflammatory bone loss model, KP-A159 significantly rescued lipopolysaccharide (LPS)-induced bone loss by suppressing osteoclast numbers. Therefore, KP-A159 targets osteoclasts, and may be a potential candidate compound for prevention and/or treatment of inflammatory bone loss.  相似文献   

7.
Osteoclast overactivation‐induced imbalance in bone remodelling leads to pathological bone destruction, which is a characteristic of many osteolytic diseases such as rheumatoid arthritis, osteoporosis, periprosthetic osteolysis and periodontitis. Natural compounds that suppress osteoclast formation and function have therapeutic potential for treating these diseases. Stachydrine (STA) is a bioactive alkaloid isolated from Leonurus heterophyllus Sweet and possesses antioxidant, anti‐inflammatory, anticancer and cardioprotective properties. However, its effects on osteoclast formation and function have been rarely described. In the present study, we found that STA suppressed receptor activator of nuclear factor‐κB (NF‐κB) ligand (RANKL)‐induced osteoclast formation and bone resorption, and reduced osteoclast‐related gene expression in vitro. Mechanistically, STA inhibited RANKL‐induced activation of NF‐κB and Akt signalling, thus suppressing nuclear factor of activated T cells c1 induction and nuclear translocation. In addition, STA alleviated bone loss and reduced osteoclast number in a murine model of LPS‐induced inflammatory bone loss. STA also inhibited the activities of NF‐κB and NFATc1 in vivo. Together, these results suggest that STA effectively inhibits osteoclastogenesis both in vitro and in vivo and therefore is a potential option for treating osteoclast‐related diseases.  相似文献   

8.
The receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-RANK regulatory axis is a major regulator of osteoclast differentiation and activation. Icariin, a flavonol glycoside isolated from the Epimedium herb, has been reported to prevents bone loss in ovariectomized mice and inhibits wear particle-induced osteolysis. However, the molecular mechanism through which icariin inhibits RANKL-induced osteoclastogenesis has not been fully understood. Therefore, we aimed to investigate the effects of icariin on RANKL-induced osteoclastogenesis and to elucidate the mechanism underlying this effect. Our results showed that RANKL-induced osteoclastogenesis was inhibited by icariin in bone marrow macrophages (BMMs) and RAW264.7?cells, and that this effect was due to suppression of NF-κB and mitogen-activated protein kinase (MAPK) activation. In addition, icariin inhibited F-actin ring formation and attenuated the bone resorption ability of mature osteoclasts. Collectively, our results indicate that icariin may be a promising potential candidate for the treatment of osteolytic diseases such as osteoporosis. Moreover, our findings lay the foundation for understanding and intervening in osteoclast-related diseases at the molecular level.  相似文献   

9.
Metabolism of bone is regulated by the balance between osteoblast‐mediated bone formation and osteoclast‐mediated bone resorption. Activation of osteoclasts could lead to osteoporosis. Thus, inhibiting the activity of osteoclasts becomes an available strategy for the treatment of osteoporosis. Tectorigenin is an extract of Belamcanda chinensis In the present study, the anti‐osteoclastogenesis effects of tectorigenin were investigated in vitro and in vivo. The results showed preventive and therapeutic effects of tectorigenin at concentrations of 0, 10, 40, and 80 μmol/L in the maturation and activation of osteoclasts. A signalling study also indicated that tectorigenin treatment reduces activation of NF‐κB signalling in osteoclastogenesis. Animal experiment demonstrated that tectorigenin treatment (1‐10 mg/kg, abdominal injection every 3 days) significantly inhibits bone loss in ovariectomized C57BL/6. Our data suggest that tectorigenin is a potential pharmacological choice for osteoporosis.  相似文献   

10.
11.
12.
Over‐activated osteoclastogenesis, which is initiated by inflammation, has been implicated in osteoporosis. Corilagin, a natural compound extracted from various medicinal herbaceous plants, such as Cinnamomum cassia, has antioxidant and anti‐inflammatory activities. We found that Corilagin suppressed osteoclast differentiation in a dose‐dependent manner, significantly decreased osteoclast‐related gene expression and impaired bone resorption by osteoclasts. Moreover, phosphorylation of members of the nuclear factor‐kappaB (NF‐κB) and PI3K/AKT signalling pathways was reduced by Corilagin. In a murine model of osteoporosis, Corilagin inhibited osteoclast functions in vivo and restored oestrogen deficiency‐induced bone loss. In conclusion, our findings suggested that Corilagin inhibited osteoclastogenesis by down‐regulating the NF‐κB and PI3K/AKT signalling pathways, thus showing its potential possibility for the treatment of osteoporosis.  相似文献   

13.
Parathyroid hormone (PTH) induces osteoclast formation and activity by increasing the ratio of RANKL/OPG in osteoblasts. The proteasome inhibitor carfilzomib (CFZ) has been used as an effective therapy for multiple myeloma via the inhibition of pathologic bone destruction. However, the effect of combination of PTH and CFZ on osteoclastogenesis is unknown. We now report that CFZ inhibits PTH-induced RANKL expression and secretion without affecting PTH inhibition of OPG expression, and it does so by blocking HDAC4 proteasomal degradation in osteoblasts. Furthermore, we used different types of culture systems, including co-culture, indirect co-culture, and transactivation, to assess the effect of CFZ on PTH action to induce osteoclastogenesis. Our results demonstrated that CFZ blocks PTH-induced osteoclast formation and bone resorption by its additional effect to inhibit RANKL-mediated IκB degradation and NF-κB activation in osteoclasts. This study showed for the first time that CFZ targets both osteoblasts and osteoclasts to suppress PTH-induced osteoclast differentiation and bone resorption. These findings warrant further investigation of this novel combination in animal models of osteoporosis and in patients.  相似文献   

14.

Introduction

Increased activity of osteoclasts is responsible for bone loss and joint destruction in rheumatoid arthritis. For osteoclast development and bone resorption activity, cytoskeletal organization must be properly regulated. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that suppress expression of their target genes. This study was conducted to identify crucial miRNAs to control osteoclasts.

Methods

miRNA expression in the bone marrow-derived macrophages (BMM) with or without receptor activator of nuclear factor κB ligand (RANKL) stimulation was analyzed by miRNA array. To examine the role of specific miRNAs in osteoclast formation, bone resorption activity and actin ring formation, the BMM were retrovirally transduced with miRNA antagomirs. To confirm whether the suppressive effects on osteoclastogenesis by miR-31 inhibition were mediated by targeting RhoA, osteoclast formation was analyzed in the presence of the RhoA inhibitor, exoenzyme C3.

Results

miR-31 was identified as one of the highly upregulated miRNAs during osteoclast development under RANKL stimulation. Inhibition of miR-31 by specific antagomirs suppressed the RANKL-induced formation of osteoclasts and bone resorption. Phalloidin staining of osteoclasts revealed that actin ring formation at the cell periphery was severely impaired by miR-31 inhibition, and clusters of small ringed podosomes were observed instead. In these osteoclasts, expression of RhoA, one of the miR-31 target genes, was upregulated by miR-31 inhibition in spite of the impaired osteoclastogenesis. Treatment with the RhoA inhibitor, exoenzyme C3, rescued the osteoclastogenesis impaired by miR-31 inhibition.

Conclusions

miR-31 controls cytoskeleton organization in osteoclasts for optimal bone resorption activity by regulating the expression of RhoA.  相似文献   

15.
During osteoporosis, fat mass and obesity-associated protein (FTO) promotes the shift of bone marrow mesenchymal stem cells to adipocytes and represses osteoblast activity. However, the role and mechanisms of FTO on osteoclast formation and bone resorption remain unknown. In this study, we investigated the effect of FTO on RAW264.7 cells and bone marrow monocytes (BMMs)-derived osteoclasts in vitro and observed the influence of FTO on ovariectomized (OVX) mice model to mimic postmenopausal osteoporosis in vivo. Results found that FTO was up-regulated in BMMs from OVX mice. Double immunofluorescence assay showed co-localization of FTO with tartrate-resistant acid phosphatase (TRAP) in femurs of OVX mice. FTO overexpression enhanced TRAP-positive osteoclasts and F-actin ring formation in RAW264.7 cells upon RANKL stimulation. The expression of osteoclast differentiation-related genes, including nuclear factor of activated T cells c1 (NFATc1) and c-FOS, was upregulated in BMMs and RAW264.7 cells after FTO overexpression. FTO overexpression induced the phosphorylation and nuclear translocation of factor-kappa B (NF-κB) p65 in BMMs and RAW264.7 cells exposed to RANKL. ChIP and dual-luciferase assays revealed that FTO overexpression contributed to RANKL-induced binding of NF-κB to NFATc1 promoter. Rescue experiments suggested that FTO overexpression-mediated osteoclast differentiation was suppressed after intervention with a NF-κB inhibitor pyrrolidine dithiocarbamate. Further in vivo evidence revealed that FTO knockdown increased bone trabecula and bone mineral density, inhibited bone resorption and osteoclastogenesis in osteoporotic mice. Collectively, our research demonstrates that downregulated FTO inhibits bone resorption and osteoclastogenesis through NF-κB inactivation, which provides a novel reference for osteoporosis treatment.  相似文献   

16.
Osteoporosis is a devastating disease that features reduced bone quantity and microstructure, which causes fragility fracture and increases mortality, especially in the aged population. Due to the long-term side-effects of current drugs for osteoporosis, it is of importance to find other safe and effective medications. Ellagic acid (EA) is a phenolic compound found in nut galls, plant extracts, and fruits, and exhibits antioxidant and antineoplastic effects. Here, we showed that EA attenuated the formation and function of osteoclast dose-dependently. The underlying mechanism was further discovered by western blot, immunofluorescence assay, and luciferase assay, which elucidated that EA suppressed osteoclastogenesis and bone resorption mainly through attenuating receptor activator of nuclear factor-κB (NF-κB) ligand-induced NF-κB activation and extracellular signal-regulated kinase signaling pathways, accompanied by decreased protein expression of nuclear factor of activated T-cells calcineurin-dependent 1 and c-Fos. Moreover, EA inhibits osteoclast marker genes expression including Dc-stamp, Ctsk, Atp6v0d2, and Acp5. Intriguingly, we also found that EA treatment could significantly protect ovariectomy-induced bone loss in vivo. Conclusively, this study suggested that EA might have the therapeutic potentiality for preventing or treating osteoporosis.  相似文献   

17.
Development and repair of the vertebrate skeleton requires the precise coordination of bone-forming osteoblasts and bone-resorbing osteoclasts. In diseases such as osteoporosis, bone resorption dominates over bone formation, suggesting a failure to harmonize osteoclast and osteoblast function. Here, we show that mice expressing a constitutively nuclear NFATc1 variant (NFATc1(nuc)) in osteoblasts develop high bone mass. NFATc1(nuc) mice have massive osteoblast overgrowth, enhanced osteoblast proliferation, and coordinated changes in the expression of Wnt signaling components. In contrast, viable NFATc1-deficient mice have defects in skull bone formation in addition to impaired osteoclast development. NFATc1(nuc) mice have increased osteoclastogenesis despite normal levels of RANKL and OPG, indicating that an additional NFAT-regulated mechanism influences osteoclastogenesis in vivo. Calcineurin/NFATc signaling in osteoblasts controls the expression of chemoattractants that attract monocytic osteoclast precursors, thereby coupling bone formation and bone resorption. Our results indicate that NFATc1 regulates bone mass by functioning in both osteoblasts and osteoclasts.  相似文献   

18.
19.
The increased activation of osteoclasts is the major manifestation of several lytic bone diseases, including osteoporosis, rheumatoid arthritis, aseptic loosening of orthopedic implants, Paget disease and malignant bone diseases. One important bone-protective therapy in these diseases focuses on the inhibition of osteoclast differentiation and resorptive function. Given that the deleterious side-effects of currently available drugs, it is beneficial to search for effective and safe medications from natural compounds. Cepharanthine (CEP) is a compound extracted from Stephania japonica and has been found to have antioxidant and anti-inflammatory effects. In this study, we found that CEP inhibited receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation and bone-resorbing activities using osteoclastogenesis and bone resorption assay. By polymerase chain reaction, we also found that CEP inhibited the expression of osteoclast-differentiation marker genes including Ctsk, Calcr, Atp6v0d2, Mmp9 and Nfatc1. Mechanistic analyses including Western blot and luciferase reporter assay revealed that CEP inhibited RANKL-induced activation of NF-κB and nuclear factor of activated T-cell, which are essential for the formation of osteoclast. Collectively, these data suggested that CEP can potentially be used as an alternative therapy for preventing or treating osteolytic diseases.  相似文献   

20.
Postmenopausal women undergo rapid bone loss, which caused by the accelerated osteoclastic bone resorption. Receptor activator of nuclear factor kappa-B ligand (RANKL) plays critical and essential roles on varied stages of osteoclastogenesis. Oleanolic acid (OA), a naturally derived small compound, has been found suppress osteoclastogenesis in early stage of bone marrow macrophages (BMMs). However, whether OA also regulates the late stage of osteoclastogenesis remains unclear. Here, the regulatory effect of OA on the late stage of osteoclastogenesis was investigated in vitro using RANKL-pretreated BMMs and in vivo using osteoprotegerin (OPG) knockout mice. Our in vitro studies demonstrate that OA inhibits the late stage of osteoclastogenesis from RANKL-pretreated BMMs. For in vivo animal investigation, OA attenuates the bone loss phenotypes in OPG-knockout mice by decreasing the densities of osteoclast, which are in consistent with the finding with in vitro osteoclastogenesis. Mechanistic investigations found that OA largely inhibit the activity of c-Fos and Nuclear factor of activated T-cells c1 (NFATc1) with RANKL-pretreated BMMs and OPG-knockout mice. Furthermore, OA suppresses the activities of osteoclast genes, such as Tartrate resistant acid phosphatase (TRAP), CathepsinK (Ctsk), and Matrix metalloproteinase 9 (MMP9). Taken together these findings, they have not only defined an inhibitory effect of OA in the late stage of osteoclastogenesis but have also gained new molecular mechanisms underlying the process of osteoclast formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号