首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beef heart cytochromec oxidase was reconstituted in asolectin liposomes containing the pH indicator fluorescein-phosphatidylethanolamine (FPE) by the cholate-dialysis procedure. The influence of PFE on the asolectin liposome size and of the removal of subunit III from the complex on its incorporation into liposomes was analyzed by freeze-fracture electron microscopy. Samples were frozen without the addition of cryoprotectants. The vesicle size distribution of native enzyme reconstituted into asolectin liposomes was homogenous, 84% of the population having a diameter of 14–37 ± 7.5 mm. The preparation containing FPE had a similar vesicle size distribution, but with bigger diameter range (20–50 nm). In all three different types of proteoliposome preparations the majority of particles containing vesicles was found to have 1 particle (42–81%). The absence of subunit III did not influence the incorporation of the enzyme into the liposomes and was as good as the preparation with native enzyme (>99%). Therefore we conclude that the suppression of the proton pump activity was due to the intrinsic properties of subunit III and not to defective incorporation into artificial membrane systems.Dedicated to the memory of Dr. R. P. Casey.  相似文献   

2.
1. Only a single phosphofructokinase isoenzyme is present in the mucosa of rat small intestine. 2. Mucosal phosphofructokinase was purified to yield a homogeneous preparation of specific activity 175 units/mg of protein. 3. The native enzyme is a tetramer, with monomer Mr 84 500 +/- 5000. 4. The native enzyme may be degraded by the action of endogenous proteinases to give two products with the same specific activity as the native enzyme: degradation occurs in the order native enzyme leads to proteolytic product 1 leads to proteolytic product 2. 5. Proteolytic product 1 has a greater mobility in cellulose acetate electrophoresis at pH8 and binds more strongly to DEAE-cellulose than does native enzyme; the converse is true for proteolytic product 2. 6. Proteolytic product 1 is a tetramer with a monomer Mr about 74 300; proteolytic product 2 is also a tetramer. 7. Native enzyme can only be prepared in the presence of proteinase inhibitors; partial purifications based on simple fractionation of crude mucosal extracts in the absence of proteinases inhibitors contain proteolytic product 2 as the main component and proteolytic product 1 together with little native enzyme. 8. Purified native mucosal phosphofructokinase displayed little co-operativity with respect to fructose 6-phosphate at pH 7.0 and was only weakly inhibited by ATP.  相似文献   

3.
The reactivity of thiol groups and the subunit structure of aldolase   总被引:7,自引:6,他引:1  
1. Seven unique carboxymethylcysteine-containing peptides have been isolated from tryptic digests of rabbit muscle aldolase carboxymethylated with iodo[2-(14)C]acetic acid in 8m-urea. These peptides have been characterized by amino acid and end-group analysis and their location within the cyanogen bromide cleavage fragments of the enzyme has been determined. 2. Reaction of native aldolase with 5,5'-dithiobis-(2-nitrobenzoic acid), iodoacetamide and N-ethylmaleimide showed that a total of three cysteine residues per subunit of mol.wt. 40000 were reactive towards these reagents, and that the modification of these residues was accompanied by loss in enzymic activity. Chemical analysis of the modified enzymes demonstrated that the same three thiol groups are involved in the reaction with all these reagents but that the observed reactivity of a given thiol group varies with the reagent used. 3. One reactive thiol group per subunit could be protected when the modification of the enzyme was carried out in the presence of substrate, fructose 1,6-diphosphate, under which conditions enzymic activity was retained. This thiol group has been identified chemically and is possibly at or near the active site. Limiting the exposure of the native enzyme to iodoacetamide also served to restrict alkylation to two thiol groups and left the enzymic activity unimpaired. The thiol group left unmodified is the same as that protected by substrate during more rigorous alkylation, although it is now more reactive towards 5,5'-dithiobis-(2-nitrobenzoic acid) than in the native enzyme. 4. Conversely, prolonged incubation of the enzyme with fructose 1,6-diphosphate, which was subsequently removed by dialysis, caused an irreversible fall in enzymic activity and in thiol group reactivity measured with 5,5'-dithiobis-(2-nitrobenzoic acid). 5. It is concluded that the aldolase tetramer contains at least 28 cysteine residues. Each subunit appears to be identical with respect to number, location and reactivity of thiol groups.  相似文献   

4.
In this paper, the stabilization of a lipase from Bacillus thermocatenulatus (BTL2) by a new strategy is described. First, the lipase is selectively adsorbed on hydrophobic supports. Second, the carboxylic residues of the enzyme are modified with ethylenediamine, generating a new enzyme having 4-fold more amino groups than the native enzyme. The chemical amination did not present a significant effect on the enzyme activity and only reduced the enzyme half-life by a 3-4-fold factor in inactivations promoted by heat or organic solvents. Next, the aminated and purified enzyme is desorbed from the support using 0.2% Triton X-100. Then, the aminated enzyme was immobilized on glyoxyl-agarose by multipoint covalent attachment. The immobilized enzyme retained 65% of the starting activity. Because of the lower p K of the new amino groups in the enzyme surface, the immobilization could be performed at pH 9 (while the native enzyme was only immobilized at pH over 10). In fact, the immobilization rate was higher at this pH value for the aminated enzyme than that of the native enzyme at pH 10. The optimal stabilization protocol was the immobilization of aminated BTL2 at pH 9 and the further incubation for 24 h at 25 degrees C and pH 10. This preparation was 5-fold more stable than the optimal BTL2 immobilized on glyoxyl agarose and around 1200-fold more stable than the enzyme immobilized on CNBr and further aminated. The catalytic properties of BTL2 could be greatly modulated by the immobilization protocol. For example, from (R/S)-2- O-butyryl-2-phenylacetic acid, one preparation of BTL2 could be used to produce the S-isomer, while other preparation produced the R-isomer.  相似文献   

5.
Phenylalanyl-tRNA synthetase (EC 6.1.1.20) has been purified to homogeneity from a 100-fold overproducing Escherichia coli strain carrying a hybrid pBR322 plasmid containing the pheS-pheT locus. The purified enzyme is identical to the phenylalanyl-tRNA synthetase isolated form an haploid strain. The enzyme was found to dissociate in the presence of 0.5 M NaSCN and the alpha- and beta-subunits composing the native alpha 2 beta 2 enzyme were separated by gel filtration. Neither isolated subunit showed significant catalytic activity. A complex indistinguishable from the native enzyme with full catalytic activity is recovered upon mixing the subunits. The N- and C-terminal sequences and the amino acid composition of each subunit were determined. They are compared to the available data concerning the primary structure of the subunits, as deduced from nucleotide sequencing of the pheS-pheT operon.  相似文献   

6.
The membrane-bound form of phosphatidylinositol-4-phosphate (PtdInsP) kinase was purified 4,300-fold from human red blood cells to a specific activity of 117 nmol min-1 mg-1. Although this enzyme copurified with red blood cell membranes, it was solubilized by high salt extraction in the absence of detergent indicating that it is a peripheral membrane protein. The major protein seen in the most purified preparation migrated at 53,000 daltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The major PtdInsP kinase activity in this preparation was also coincident with this 53,000-dalton band upon renaturation of activity from SDS-PAGE. To test further whether the 53,000-dalton protein contained PtdInsP kinase activity, antibodies were prepared against the gel-purified 53,000-dalton protein. This antiserum was able to precipitate both the 53,000-dalton peptide and PtdInsP kinase activity from red blood cell membranes. The apparent size of the native enzyme in the most purified preparation was determined to be 150,000 +/- 25,000 daltons by gel filtration. This PtdInsP kinase activity was at least 100-fold more active in phosphorylating PtdInsP than phosphatidylinositol and was easily separated from the red cell membrane phosphatidylinositol kinase by salt extraction. Analysis of the reaction product, phosphatidylinositol 4,5-bisphosphate, indicates that the enzyme phosphorylates phosphatidylinositol 4-phosphate specifically at the 5'-hydroxyl of the inositol ring. The apparent Km for ATP was 2 microM, and the concentrations of Mg2+ and Mn2+ giving half-maximal activity were 2 and 0.2 mM, respectively. Mg2+ supported 3-fold higher activity than Mn2+ at optimal concentrations. The enzymatic activity was inhibited by its product, phosphatidylinositol 4,5-bisphosphate and enhanced by phosphatidylserine.  相似文献   

7.
Argininosuccinate lyase (EC 4.3.2.1) was purified by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose and gel filtration on Sephadex G-200. The final enzyme preparation was purified 46-fold compared with the crude extract. Electrophoresis of this preparation revealed three bands, the major one having the enzyme activity. Analysis of the enzyme by gel filtration and by disc electrophoresis (in two different concentrations of acrylamide) gave mol.wts. of 200000 (+/- 15000) and 190000 (+/- 20000) respectively. Treatment with sodium dodecyl sulphate and mercaptoethanol dissociated the enzyme into subunits of mol.wt. 39000 (+/-2000). The results are indicative of the multimeric structure of the enzyme, which is composed of five (perhaps four or six) identical subunits.  相似文献   

8.
The activity of long-chain acyl-CoA hydrolase in rat liver was increased by the administration of peroxisome proliferators, such as ethyl p-chlorophenoxyisobutyrate, di(2-ethylhexyl)phthalate or acetylsalicylic acid. The induced activity was mainly confined in the soluble fluid after the subcellular fractionation. The enzyme was purified nearly to homogeneity from livers of rats treated with di(2-ethylhexyl)phthalate. The specific activity of the final preparation was 247 mumol palmitoyl-CoA hydrolyzed min-1 mg protein-1. The molecular weight of the native enzyme was estimated to be 150 000 by gel filtration and that of the subunits was 41 000 by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The activity of the enzyme was not increased but inhibited by bovine serum albumin or Triton X-100. The molecular and catalytic properties of the enzyme suggest that the induced enzyme was different from mitochondrial and microsomal long-chain acyl-CoA hydrolyses in liver.  相似文献   

9.
γ-Glutamyl transpeptidase (EC 2.3.2.2) of rat kidney is composed of two nonidentical polypeptide chains, the small and large subunits. The active site of this enzyme has previously been shown to be located in the small subunit [Inoue, M., Horiuchi, S. &; Morino, Y. (1977) Eur, J. Biochem. 73, 335–342; Tate, S. S. &; Meister, A. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 931–935] The denaturation of this oligomeric enzyme in 6 M urea, followed by chromatography on a Sephadex G-150, resulted in the separation of the large and small subunits. The removal of urea gave rise to an enzymatically active preparation from the denatured large subunit. Under several renaturation conditions, the small subunit polypeptide chain did not exhibit the enzymatic activity. Upon incubation with 6-diazo-5-oxo-L-[1,2,3,4,5-14C]norleucine, an affinity label for γ-glutamyl transpeptidase, the renatured preparation of the large subunit was covalently labeled with the affinity label with concomitant loss of the enzymatic activity. When the native enzyme was inactivated by the 14C-affinity label, radioactivity was selectively incorporated into the small subunit. These findings indicate that the isolated large subunit possesses an active site which is masked in the native state of the enzyme.  相似文献   

10.
林生山黧豆谷氨酸脱羧酶的分离纯化及部分性质的研究   总被引:1,自引:0,他引:1  
以林生山黧豆为材料,利用硫酸按分段盐析,丙酮沉淀,DEAE-SepharoseFF离子交换柱层析,SephacrylS300凝胶过滤柱层析及FPLC-MonoQ柱层析技术,以聚酰胺薄膜层析荧光定量法为酶活力检测手段,分离纯化了谷氨酸脱羧酶,达到电泳银染纯.纯化后的林生山黧豆谷氨酸脱羧酶活力达375.09U·mp-1,纯化倍数38.2倍,经SDS-PAGE测定,其亚基分子量为70kD,经梯度PAGE确定,天然分子量为140kD,表明该酶是由两个亚基组成的二聚体.酶学研究表明,纯化的林生山黧豆谷氨酸脱羧酶的最适pH值为5.4,对谷氨酸的Km值为1.62×10-3mol·L-1,酶的最适温度为40℃,酶特异性地使谷氨酸脱羧,不能使天门冬氨酸等其它氨基酸脱羧.  相似文献   

11.
1. The purification of a nuclease from rat-liver mitochondria is described. The mitochondria are rendered soluble by treatment with Triton X-100 and, after fractionation with ammonium sulphate and acetone, the active fraction is further purified by chromatography on DEAE-cellulose and Sephadex G-75 to give a purification of over 700-fold. 2. The purified enzyme was only very slightly contaminated with deoxyribonuclease II, phosphodiesterase and phosphomonoesterase. The individual activities of these enzymes did not exceed 0.1% of the activity of the liver nuclease. 3. The purified enzyme attacked RNA more rapidly than denatured DNA and hydrolysed native DNA more slowly than denatured DNA. 4. There is some evidence to suggest that the nucleolytic activity of the purified preparation towards native DNA, denatured DNA and RNA is associated with a single protein. 5. The enzyme is relatively labile but is stabilized in the presence of 20% (w/v) glycerol or 10mm-2-mercaptoethanol.  相似文献   

12.
Ram spermatozoa adenylate cyclase is insensitive to all usual regulatory processes. The purification of its active catalytic subunit was accomplished after proteolytic solubilization of a particulate fraction by alpha-chymotrypsin. The purification (26,000-fold from the particulate fraction or 125,000-fold from the whole-sperm proteins) was achieved by conventional procedures (DEAE-Trisacryl, Ultrogel AcA 34, DEAE-Sephacel, hydroxyapatite), in the absence of detergent, and with a yield of 5-10% and a final specific activity of 19 mumol cyclic AMP formed mg protein-1 min-1 at 30 degrees C in the presence of manganese as cosubstrate. The solubilized enzyme, stable at the beginning of the purification procedure, became unstable at the later stages. After the last step (chromatography on hydroxyapatite) half-lives of 27 min, 50 min and 160 min were obtained at 30 degrees C, 20 degrees C and 4 degrees C respectively. The enzyme was stabilized by addition of bovine serum albumin and Lubrol PX, 80% of the activity remaining after 24 h at 4 degrees C. The purified enzyme exhibited a Km value similar to that of the native enzyme (Km = 1.4 mM). Unlike the native enzyme, the purified enzyme has an absolute requirement for MnATP; no significant activity was recovered in the presence of MgATP. Adenosine inhibited the activity of both the native and purified forms of the enzyme to the same extent and in a non-competitive manner. This indicates that adenosine acts on the catalytic component itself and the inhibition site and the catalytic site are different. Data obtained with adenosine analogs indicate that adenosine interacts with the cyclase catalytic subunit with a 'P-site' specificity. The purified adenylate cyclase, which had an apparent molecular mass of 38 kDa on a high-performance liquid chromatography column [Stengel, D., Guenet, L. and Hanoune, J. (1982) J. Biol. Chem. 257, 10,818-10,826], gave a doublet of 36 kDa and 34 kDa on sodium dodecyl sulfate gel electrophoresis. This represents the smallest protein entity associated with adenylate cyclase activity so far reported.  相似文献   

13.
The oligomeric form of the larger subunit designated as Am produced by alkali treatment of ribulose-1,5-diphosphate carboxylase from the purple sulfur bacterium, Chromatium strain D, retained partial enzymic activity in the absence of the small subunit (B). Supporting evidence was obtained by polyacrylamide gel electrophoresis at pH 8.9 and Sephadex G-200 gel filtration equilibrated with alkaline buffer at pH 9.2. The specific enzyme activity of Am (45 nmoles CO2 fixed/mg protein/min) was approximately 15% of the native intact enzyme molecule. By sodium dodecyl sulfatepolyacrylamide gel electrophoresis, the Am preparation was proved to be free from contamination of subunit B. With reservation of the sensitivity limit of this particular technique we concur that the larger subunit is the catalytic entity of the carboxylase reaction. The optimum pH of the ribulose-1,5-diphosphate carboxylase reaction catalyzed by isolated Am lies on the alkaline side at about pH 8.3 with or without Mg2+. The undissociated native enzyme possesses an optimum pH on the alkaline side in the absence of Mg2+, which shifts to the acidic side in the presence of Mg2+. From this behavior it is inferred that the association of the smaller subunit with the larger subunit causes conformational stabilization of the enzyme molecule with an accompanying change in the pH optimum due to Mg2+.  相似文献   

14.
1. 3-Deoxy-D-arabinoheptulosonate-7-phosphate synthetase(phe) from Escherichia coli K12 has been purified to near homogeneity. The purified enzyme has a specific activity of 67 units/mg which is about 1000 times that found in cell-free extracts of wild-tupe E. coli K12. 2. The minimum molecular weight of the enzyme was estimated by dodecylsuphate-gel electrophoresis to be 33000. Re-estimation of the native molecular weight by gel filtration confirmed the previously determined value of 110000. 3.Amino acid anaktsus abd tryptic fingerprints indicated that the subunits of the enzyme are very similar and possibly identical. 4.The purified enzyme does not contain Co2+.  相似文献   

15.
Human sulphamate sulphohydrolase was purified at least 20,000-fold to homogeneity from liver with a three-step four-column procedure, which consisted of a concanavalin A-Sepharose/Blue A agarose coupled step, and Bio-Gel HT step and then a CM-Sepharose step. The procedure was also used to purify enzyme from kidney and placenta. The subunit Mr of liver, kidney and placenta sulphamate sulphohydrolase was assessed to be 56,000 by using SDS/polacrylamide-gel electrophoresis. The native protein Mr of enzyme from all three tissue sources was assessed by gel-permeation chromatography to be approx. 120,000 on Sephacryl S-300 and 100,000 on Fractogel TSK. It is probable that the native enzyme results from dimerization of subunits. Kinetic parameters (km and kcat.) of human liver sulphamate sulphohydrolase were determined with a variety of substrates matching structural aspects of the physiological substrates in vivo, namely heparin and heparan sulphate. More structurally complex substrates, in which several aspects of the aglycone structure of the natural substrate were maintained, are turned over up to 372000 times faster than the monosaccharide substrate 2-sulphaminoglucosamine. Aglycone structures that influence substrate binding and/or enzyme activity were penultimate-residue C-6 carboxy and C-2 sulphate ester groups and a post-penultimate 2-sulphaminoglucosamine residue. The C-4 hydroxy group of the 2-sulphaminoglucosamine under enzymic attack is involved in binding of substrate to enzyme. The presence of C-6 sulphate ester on the non-reducing end 2-sulphaminoglucosamine stimulates sulphamate bond hydrolysis and substrate affinity if the adjacent monosaccharide residue is idose or 2-sulphoidose, but strongly inhibits hydrolysis if the adjacent monosaccharide residue is iduronic acid. Sulphamate sulphohydrolase is an exoenzyme, since activity toward internal sulphamate bonds was not detected. The effect of incubation pH on enzyme activity towards the variety of substrates evaluated was complex and dependent on substrate aglycone structure. The presence of aglycone C-2 sulphate ester and aglycone C-6 carboxy groups and C-6 sulphate ester groups on the 2-sulphaminoglucosamine residue under attack considerably affect the pH response. Structurally complex substrates had two pH optima. Incubation temperature and buffer ionic strength markedly influenced pH optima and enzyme activity. Cu2+ and SO4(2-)ions are potent inhibitors of enzyme activity.  相似文献   

16.
The guanosine 3':5'-monophosphate-dependent protein kinase from bovine lung was purified to apparent homogeneity by affinity chromography using 8-2-aminoethylthio-cGMP coupled to Sepharose 4B. The kinase activity was purified approximately 6000-fold with an overall recovery of approximately 20%. The product isolated by affinity chromatography contained both cGMP-binding and cGMP-dependent histone kinase activity, indicating that the enzyme was not dissociated into regulatory and catalytic components by the immobilized cGMP derivative. The enzyme had a molecular weight of approximately 165,000 and a sedimentation coefficient of 7.8 S. The purified kinase displayed several characteristics similar to that of the partially purified enzyme including specificity for cGMP and stimulation by high concentrations of magnesium. On sodium dodecyl sulfate gels, only one major polypeptide chain was present having a molecular weight of approximately 81,000. This subunit bound 1 mol of cGMP and exhibited cGMP-dependent protein kinase activity. It is proposed that the native enzyme consists of two identical subunits (Mr=81,000), each of which binds cGMP and catalyzes protein phosphorylation.  相似文献   

17.
Phenylalanyl-tRNA synthetase (EC 6.1.1.20) has been purified to homogeneity from a 100-fold overproducing Escherichia coli strain carrying a hybrid pBR322 plasmid containing the pheS-pheT locus. The purified enzyme is identical to the phenylalanyl-tRNA synthetase isolated from an haploid strain. The enzyme was found to dissociate in the presence of 0.5 M NaSCN and the α- and β-subunits composing the native α2β2 enzyme were separated by gel filtration. Neither isolated subunit showed significant catalytic activity. A complex indistinguishable from the native enzyme with full catalytic activity is recovered upon mixing the subunits. The N- and C-terminal sequences and the amino acid composition of each subunit were determined. They are compared to the available data concerning the primary structure of the subunits, as deduced from nucleotide sequencing of the pheS-pheT operon.  相似文献   

18.
During the purification of RNA polymerase from Xanthomonas campestris pv. oryzae, a new subunit named k was found to be associated with this enzyme. The removal of subunit k from holoenzyme by DEAE-cellulose column chromatography results in a decrease in specific activity of the enzyme. The readdition of subunit k to subunit k-depleted holoenzyme results in restoration of enzymatic activity. Subunit k increase the activity of RNA polymerase; the activation was in proportion to the concentration of subunit k added. Antiserum against holoenzyme devoid of subunit k was prepared. This antiserum did not react with purified subunit k; therefore, subunit k may not be the proteolytic fragment of the beta, beta', sigma, or alpha subunit. When this antiserum was used to precipitate RNA polymerase obtained from a crude extract of bacterial cells, subunit k was coprecipitated as determined by sodium dodecyl sulfate gel electrophoretic analysis. The molecular mass of subunit k is approximately 29 kDa, and the molar ratio of beta:beta':sigma:alpha:k was estimated to be 1:1:1:2:4. When native Xp10 DNA was used as template, subunit k stimulated subunit k-depleted holoenzyme, but not core enzyme. When the synthetic polynucleotide poly[d(A-T)] was used, subunit k activated both subunit k-depleted holoenzyme and core enzyme. Subunit k also activated the binding of RNA polymerase to template DNA.  相似文献   

19.
UDP-N-acetylglucosamine:glycoprotein N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase) from the soil amoeba Acanthamoeba castellanii has been purified over 100,000-fold by means of wheat germ agglutinin-Sepharose affinity chromatography, DEAE-cellulose chromatography, concanavalin A-Sepharose affinity chromatography, orange A-agarose dye chromatography, and gel filtration on Superose 6. The most purified enzyme has an estimated specific activity of at least 5 mumol of GlcNAc-phosphate transferred/min/mg of protein using alpha-methylmannoside as acceptor. The molecular weight of the native enzyme is approximately 250,000, as determined by gel filtration and glycerol gradients in H2O and D2O. A protein with an apparent M(r) of 97,000 in small scale preparations and its putative proteolytic fragment of 43,000 in large scale preparations co-purifies with the enzyme activity. This protein is covalently modified with GlcNAc-[32P]phosphate when the enzyme preparation is incubated with [beta-32P]UDP-GlcNAc in the absence of an acceptor substrate. The labeling of the 97(43)-kDa protein requires active enzyme and is completely inhibited by the addition of the acceptor substrate alpha-methylmannoside. The GlcNAc-[32P]phosphate transferred to the protein is not bound to serine, threonine, tyrosine, or mannose residues. The 97(43)-kDa protein with covalently bound GlcNAc-P does not serve as a kinetically competent enzyme-substrate intermediate. However, preincubation of GlcNAc-phosphotransferase with UDP-GlcNAc does result in a decrease in the Vmax of the enzyme in subsequent assays. Taken together, these data are consistent with the 97(43)-kDa protein being a subunit of GlcNAc-phosphotransferase.  相似文献   

20.
Clostridium perfringens alpha-N-acetylgalactosaminidase (alphaNAG) hydrolyzed the terminal N-acetyl-alpha-d-galactosamine from the blood type A(2) antigen producing H antigen, blood type O. Blood type O is universally compatible in the ABO system. Purification of the native enzyme is difficult with very low yields. To obtain the enzyme in satisfactory yield, the gene encoding the clostridial enzyme was cloned in an Escherichia coli T7 expression system. A highly purified preparation of recombinant alphaNAG was obtained from cell lysates by ion-exchange chromatography and high-pressure liquid chromatography. The final preparation was homogeneous by SDS-PAGE with a molecular mass of 71.96kDa and the native molecular weight of 72.42kDa. The enzyme was highly selective for terminal N-acetylgalactosamine residues. No other significant exoglycosidase activities, particularly neuraminidase, were detected. The pH optimum of the enzyme was between 6.5 and 7.0 and activity was relatively unaffected by ionic strength. ELISA experiments demonstrated activity against blood type A(2) epitope. These characteristics were similar to those of native alphaNAG from C. perfringens. With adequate expression in E. coli, sufficient recombinant alphaNAG enzyme mass can be obtained for potential use in enzymatic conversion of human blood type A(2) red blood cells to universally transfusable type O red blood cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号