首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
This study describes the use of rapid transient kinetic methods to characterize the bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) enzyme from Toxoplasma gondii. In addition to elucidating the detailed kinetic scheme for this enzyme, this work provides the first direct kinetic evidence for the formation of a TS intermediate and for half-sites TS reactivity in human and Escherichia coli monofunctional TS and in T. gondii and Leishmania major bifunctional TS-DHFR. Comparison of the T. gondii TS-DHFR catalytic mechanism to that of the L. major enzyme reveals the mechanistic differences to be predominantly in DHFR activity. Specifically, TS ligand induced domain-domain communication involving DHFR activation is observed only in the L. major enzyme and, whereas both DHFR activities involve a rate-limiting conformational change, the change occurs at different positions along the kinetic pathway.  相似文献   

2.
Dasgupta T  Anderson KS 《Biochemistry》2008,47(5):1336-1345
Plasmodium falciparum thymidylate synthase-dihydrofolate reductase (TS-DHFR) is an essential enzyme in nucleotide biosynthesis and a validated molecular drug target in malaria. Because P. falciparum TS and DHFR are highly homologous to their human counterparts, existing active-site antifolate drugs can have dose-limiting toxicities. In humans, TS and DHFR are two separate proteins. In P. falciparum, however, TS-DHFR is bifunctional, with both TS and DHFR active sites on a single polypeptide chain of the enzyme. Consequently, P. falciparum TS-DHFR contains unique distant or nonactive regions that might modulate catalysis: (1) an N-terminal tail and (2) a linker region tethering DHFR to TS, and encoding a crossover helix that forms critical electrostatic interactions with the DHFR active site. The role of these nonactive sites in the bifunctional P. falciparum TS-DHFR is unknown. We report the first in-depth, pre-steady-state kinetic characterization of the full-length, wild-type (WT) P. falciparum TS-DHFR enzyme and probe the role of distant, nonactive regions through mutational analysis. We show that the overall rate-limiting step in the WT P. falciparum TS-DHFR enzyme is TS catalysis. We further show that if TS is in an activated (liganded) conformation, the DHFR rate is 2-fold activated, from 60 s-1 to 130 s-1 in the WT enzyme. The TS rate is also reciprocally activated by approximately 1.5-fold if DHFR is in an activated, ligand-bound conformation. Mutations to the linker region affect neither catalytic rate nor domain-domain communication. Deletion of the N-terminal tail, although in a location remote from the active site, decreases the DHFR single rate and the bifunctional TS-DHFR rate by a factor of 2. The 2-fold activation of the DHFR rate by TS ligands remains intact, although even the activated N-terminal mutant has just half the DHFR activity of the WT enzyme. However, the reciprocal communication between TS active site and DHFR ligands is impaired in N-terminal mutants. Surprisingly, deletion of the analogous N-terminal tail in Leishmania major TS-DHFR causes a 3-fold enhancement of the DHFR rate from approximately 14 s-1 to approximately 40 s-1. In summary, our results demonstrate a complex interplay of domain-domain communication and nonactive-site modulation of catalysis in P. falciparum TS-DHFR. Furthermore, each parasitic TS-DHFR is activated by unique mechanisms, modulated by their nonactive site regions. Finally, our studies suggest the N-terminal tail of P. falciparum TS-DHFR is a highly selective, novel target for potential antifolate development in malaria.  相似文献   

3.
In contrast with most species, including humans, which have monofunctional forms of the folate biosynthetic enzymes TS (thymidylate synthase) and DHFR (dihydrofolate reductase), several pathogenic protozoal parasites, including Cryptosporidium hominis, contain a bifunctional form of the enzymes on a single polypeptide chain having both catalytic activities. The crystal structure of the bifunctional enzyme TS-DHFR C. hominis reveals a dimer with a 'crossover helix', a swap domain between DHFR domains, unique in that this helical region from one monomer makes extensive contacts with the DHFR active site of the other monomer. In the present study, we used site-directed mutagenesis to probe the role of this crossover helix in DHFR catalysis. Mutations were made to the crossover helix: an 'alanine-face' enzyme in which the residues on the face of the helix close to the DHFR active site of the other subunit were mutated to alanine, a 'glycine-face' enzyme in which the same residues were mutated to glycine, and an 'all-alanine' helix in which all residues of the helix were mutated to alanine. These mutant enzymes were studied using a rapid transient kinetic approach. The mutations caused a dramatic decrease in the DHFR activity. The DHFR catalytic activity of the alanine-face mutant enzyme was 30 s(-1), the glycine-face mutant enzyme was 17 s(-1), and the all-alanine helix enzyme was 16 s(-1), all substantially impaired from the wild-type DHFR activity of 152 s(-1). It is clear that loss of helix interactions results in a marked decrease in DHFR activity, supporting a role for this swap domain in DHFR catalysis. The crossover helix provides a unique structural feature of C. hominis bifunctional TS-DHFR that could be exploited as a target for species-specific non-active site inhibitors.  相似文献   

4.
We have determined the crystal structure of dihydrofolate reductase-thymidylate synthase (DHFR-TS) from Cryptosporidium hominis, revealing a unique linker domain containing an 11-residue alpha-helix that has extensive interactions with the opposite DHFR-TS monomer of the homodimeric enzyme. Analysis of the structure of DHFR-TS from C. hominis and of previously solved structures of DHFR-TS from Plasmodium falciparum and Leishmania major reveals that the linker domain primarily controls the relative orientation of the DHFR and TS domains. Using the tertiary structure of the linker domains, we have been able to place a number of protozoa in two distinct and dissimilar structural families corresponding to two evolutionary families and provide the first structural evidence validating the use of DHFR-TS as a tool of phylogenetic classification. Furthermore, the structure of C. hominis DHFR-TS calls into question surface electrostatic channeling as the universal means of dihydrofolate transport between TS and DHFR in the bifunctional enzyme.  相似文献   

5.
Protozoal parasites are unusual in that their thymidylate synthase (TS) and dihydrofolate reductase (DHFR) enzymes exist on a single polypeptide. In an effort to probe the possibility of substrate channeling between the TS and DHFR active sites and to identify inhibitors specific for bifunctional TS-DHFR, we used molecular docking to screen for inhibitors targeting the shallow groove connecting the two active sites. Eosin B is a 100 microm non-active site inhibitor of Leishmania major TS-DHFR identified by molecular docking. Eosin B slows both the TS and DHFR reaction rates. When Arg-283, a key residue to which eosin B is predicted to bind, is mutated to glutamate, however, eosin B only minimally inhibits the TS-DHFR reaction. Additionally, eosin B was found to be a 180 microm inhibitor of Toxoplasma gondii in both biochemical and cell culture assays.  相似文献   

6.
Thymidylate synthase-dihydrofolate reductase in protozoa   总被引:1,自引:0,他引:1  
In protozoa, thymidylate synthase (TS) and dihydrofolate reductase (DHFR) exist on the same polypeptide. The DHFR domain is on the amino terminus, TS is on the carboxy terminus, and the domains are separated by a junction peptide of varying size depending on the source. The native protein is a dimer of two such subunits and is 110-140 kDa. Most studies of bifunctional TS-DHFR have been performed with the protein from anti-folate resistant strains of Leishmania major, which show amplification of the TS-DHFR gene and overproduction of the bifunctional protein. The Leishmania TS-DHFR has also been highly expressed in heterologous systems. There is extensive communication between domains, and channeling of the H2folate product of TS to DHFR. Anti-folates commonly used to treat microbial infections are poor inhibitors of L. major DHFR. However, selective inhibitors of L. major vs human DHFR have been found. The TS-DHFR from Plasmodium falciparum has also been cloned and sequenced. Interestingly, pyrimethamine-resistant strains of P. falciparum have a common point mutation in the DHFR coding sequence which causes decreased binding of the folate analog. A detailed knowledge of the structure and function of protozoan TS-DHFRs will soon be available.  相似文献   

7.
Bifunctional thymidylate synthase-dihydrofolate reductase in protozoa   总被引:1,自引:0,他引:1  
Protozoa contain thymidylate synthase (TS) and dihydrofolate reductase (DHFR) on the same polypeptide. In the bifunctional protein, the DHFR domain is on the amino terminus, TS is on the carboxyl terminus, and the two domains are separated by a junction peptide of varying size depending on the source. The native protein is composed of a dimer of two such subunits and is 110-140 kDa. Most studies of the bifunctional TS-DHFR have been performed with the protein from anti-folate resistant strains of Leishmania major, which show amplification of the TS-DHFR gene and overproduction of the bifunctional protein. The Leishmania TS-DHFR has also been highly expressed in heterologous systems. There appears to be extensive communication among domains and channeling of the H2folate product of TS to DHFR. Anti-folates commonly used to treat microbial infections are poor inhibitors of L. major DHFR. However, selective inhibition of L. major vs. human DHFR does not appear difficult to achieve, and selective inhibitors are known. The TS-DHFR from Plasmodium falciparum has also been cloned and has recently been expressed in Escherichia coli, albeit in small amounts. Interestingly, pyrimethamine-resistant strains of P. falciparum all have a common point mutation in the DHFR coding sequence (Thr/Ser 108 to Asn), which causes decreased binding of the folate analog. It is suggested that if an appropriate inhibitor of the pyrimethamine-resistant P. falciparum DHFRs can be found, it may serve in combination with pyrimethamine as an antimalarial regimen with low propensity for the development of resistance. In the future, we project that we will have a detailed knowledge of the structure and function of TS-DHFRs, and have the essential tools necessary for a molecular-based approach to drug design.  相似文献   

8.
Cryptosporidium hominis TS-DHFR exhibits an unusually high rate of catalysis at the TS domain, at least 10-fold greater than those of other TS enzymes. Using site-directed mutagenesis, we have mutated residues Ala287 and Ser290 in the folate-binding helix to phenylalanine and glycine, respectively, the corresponding residues in human and most other TS enzymes. Our results show that the mutant A287F, the mutant S290G, and the double mutant all have reduced affinities for methylene tetrahydrofolate and reduced rates of reaction at the TS domain. Interestingly, the S290G mutant enzyme had the lowest TS activity, with a catalytic efficiency approximately 200-fold lower than that of the wild type (WT). The rate of conformational change of the S290G mutant is approximately 80 times slower than that of WT, resulting in a change in the rate-limiting step from hydride transfer to covalent ternary complex formation. We have determined the crystal structure of ligand-bound S290G mutant enzyme, which shows that the primary effect of the mutation is an increase in the distance between the TS ligands. The kinetic and crystal structure data presented here provide the first evidence explaining the unusually fast TS rate in C. hominis.  相似文献   

9.
Effective therapies are lacking to treat gastrointestinal infections caused by the genus Cryptosporidium, which can be fatal in the immunocompromised. One target of interest is Cryptosporidium hominis (C. hominis) thymidylate synthase-dihydrofolate reductase (ChTS-DHFR), a bifunctional enzyme necessary for DNA biosynthesis. Targeting the TS-TS dimer interface is a novel strategy previously used to identify inhibitors against the related bifunctional enzyme in Toxoplasma gondii. In the present study, we target the ChTS dimer interface through homology modeling and high-throughput virtual screening to identifying allosteric, ChTS-specific inhibitors. Our work led to the discovery of methylenedioxyphenyl-aminophenoxypropanol analogues which inhibit ChTS activity in a manner that is both dose-dependent and influenced by the conformation of the enzyme. Preliminary results presented here include an analysis of structure activity relationships and a ChTS-apo crystal structure of ChTS-DHFR supporting the continued development of inhibitors that stabilize a novel pocket formed in the open conformation of ChTS-TS.  相似文献   

10.
Thymidylate synthetase (TS) and dihydrofolate reductase (DHFR) in Leishmania tropica exist as a bifunctional protein. By use of a methotrexate-resistant strain, which overproduces the bifunctional enzyme, the protein was purified 80-fold to apparent homogeneity in two steps. The native protein has an apparent molecular weight of 110 000 and consists of two subunits with identical size and charge. Available data indicate that each of the subunits possesses TS and DHFR. The TS of the bifunctional protein forms a covalent 5-fluoro-2'-deoxyuridylate (FdUMP)-(+/-)-5,10-methylenetetrahydrofolate-enzyme complex in which 2 mol of FdUMP is bound per mole of enzyme. In contrast, titration of DHFR with methotrexate indicated that only 1 mol of the inhibitor is bound per mole of dimeric enzyme. Both TS and DHFR activities of the bifunctional enzyme were inactivated by the sulfhydryl reagent N-ethylmaleimide. Substrates of the individual enzymes afforded protection against inactivation, indicating that each enzyme requires at least one cysteine for catalytic activity. Kinetic evidence indicates that most, if not all, of the 7,8-dihydrofolate produced by TS is channeled to DHFR faster than it is released into the medium. Although the mechanism of channeling is unknown, the possibility that the two enzymes share a common folate binding site has been ruled out.  相似文献   

11.
The thymidylate synthase (TS) activity in Leishmania major resides on the bifunctional protein thymidylate synthase-dihydrofolate reductase (TS-DHFR). We have isolated, either by Sephadex G-25 chromatography or by nitrocellulose filter binding, a binary complex between the substrate deoxyuridylate (dUMP) and TS from L. major. The kinetics of binding support a "slow binding" mechanism in which dUMP initially binds to TS in a rapid, reversible pre-equilibrium step (Kd approximately 1 microM), followed by a slow first-order step (k = 3.5 X 10(-3) s-1) which results in the isolable complex; the rate constant for the dissociation of dUMP from this complex was 2.3 X 10(-4) s-1, and the overall dissociation constant was approximately 0.1 microM. The stoichiometry of dUMP to enzyme appears to be 1 mol of nucleotide bound/mol of dimeric TS-DHFR. Binary complexes between the stoichiometric inhibitor 5-fluorodeoxyuridylate (FdUMP) and TS, and between the product deoxythymidylate (dTMP) and TS were also isolated by nitrocellulose filter binding. Competition experiments indicated that each of these nucleotides were binding to the same site on the enzyme and that this site was the same as that occupied by the nucleotide in the FdUMP-cofactor X TS ternary complex. Thus, it appeared that the binary complexes were occupying the active site of TS. However, the preformed isolable dUMP X TS complex is neither on the catalytic path to dTMP nor did it inhibit TS activity, even though the dissociation of dUMP from this complex is several orders of magnitude slower than catalytic turnover (approximately 3 s-1). The results suggest that dUMP binds to one of the two subunits of the native protein in a catalytically incompetent form which does not inhibit activity of the other subunit.  相似文献   

12.
Cryptosporidium is the causative agent of a gastrointestinal disease, cryptosporidiosis, which is often fatal in immunocompromised individuals and children. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer, bacterial infections, and malaria. Cryptosporidium hominis has a bifunctional thymidylate synthase and dihydrofolate reductase enzyme, compared to separate enzymes in the host. We evaluated lead compound 1 from a novel series of antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines as an inhibitor of Cryptosporidium hominis thymidylate synthase with selectivity over the human enzyme. Complementing the enzyme inhibition compound 1 also has anti-cryptosporidial activity in cell culture. A crystal structure with compound 1 bound to the TS active site is discussed in terms of several van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate (TS), cofactor NADPH and inhibitor methotrexate (DHFR). Another crystal structure in complex with compound 1 bound in both the TS and DHFR active sites is also reported here. The crystal structures provide clues for analog design and for the design of ChTS–DHFR specific inhibitors.  相似文献   

13.
We perform Brownian dynamics simulations and Smoluchowski continuum modeling of the bifunctional Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (P. falciparum DHFR-TS) with the objective of understanding the electrostatic channeling of dihydrofolate generated at the TS active site to the DHFR active site. The results of Brownian dynamics simulations and Smoluchowski continuum modeling suggest that compared to Leishmania major DHFR-TS, P. falciparum DHFR-TS has a lower but significant electrostatic-mediated channeling efficiency (∼15–25%) at physiological pH (7.0) and ionic strength (150 mM). We also find that removing the electric charges from key basic residues located between the DHFR and TS active sites significantly reduces the channeling efficiency of P. falciparum DHFR-TS. Although several protozoan DHFR-TS enzymes are known to have similar tertiary and quaternary structure, subtle differences in structure, active-site geometry, and charge distribution appear to influence both electrostatic-mediated and proximity-based substrate channeling.  相似文献   

14.
In this study we used site-directed mutagenesis to test the hypothesis that substrate channeling in the bifunctional thymidylate synthase-dihydrofolate reductase enzyme from Leishmania major occurs via electrostatic interactions between the negatively charged dihydrofolate produced at thymidylate synthase and a series of lysine and arginine residues on the surface of the protein. Accordingly, 12 charge reversal or charge neutralization mutants were made, with up to 6 putative channel residues changed at once. The mutants were assessed for impaired channeling using two criteria: a lag in product formation at dihydrofolate reductase and an increase in dihydrofolate accumulation. Surprisingly, none of the mutations produced changes consistent with impaired channeling, so our findings do not support the electrostatic channeling hypothesis. Burst experiments confirmed that the mutants also did not interfere with intermediate formation at thymidylate synthase. One mutant, K282E/R283E, was found to be thymidylate synthase-dead because of an impaired ability to form the covalent enzyme-methylene tetrahydrofolate-deoxyuridate complex prerequisite for chemical catalysis.  相似文献   

15.
Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) is an important target of antimalarial drugs. The efficacy of this class of DHFR-inhibitor drugs is now compromised because of mutations that prevent drug binding yet retain enzyme activity. The crystal structures of PfDHFR-TS from the wild type (TM4/8.2) and the quadruple drug-resistant mutant (V1/S) strains, in complex with a potent inhibitor WR99210, as well as the resistant double mutant (K1 CB1) with the antimalarial pyrimethamine, reveal features for overcoming resistance. In contrast to pyrimethamine, the flexible side chain of WR99210 can adopt a conformation that fits well in the active site, thereby contributing to binding. The single-chain bifunctional PfDHFR-TS has a helical insert between the DHFR and TS domains that is involved in dimerization and domain organization. Moreover, positively charged grooves on the surface of the dimer suggest a function in channeling of substrate from TS to DHFR active sites. These features provide possible approaches for the design of new drugs to overcome antifolate resistance.  相似文献   

16.
The relationship between the active sites of the bifunctional enzyme chorismate mutase-prephenate dehydratase has been examined. Steady-state kinetic investigations of the reactions with chorismate or prephenate as substrate and studies of the overall conversion of chorismate to phenylpyruvate indicate that there are two distinct active sites. One site is responsible for the mutase activity and the other for the dehydratase activity. Studies of the overall reaction using radioactive chorismate show that prephenate, which is formed from chorismate, dissociates from the mutase site and equilibrates with the bulk medium before combining at the dehydratase site. No evidence was obtained for direct channeling of prephenate from one site to the other, or for any strong interaction between the sites.  相似文献   

17.
Proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyze the four-electron oxidation of proline to glutamate via the intermediates P5C and l-glutamate-γ-semialdehyde (GSA). In Gram-negative bacteria, PRODH and P5CDH are fused together in the bifunctional enzyme proline utilization A (PutA) whereas in other organisms PRODH and P5CDH are expressed as separate monofunctional enzymes. Substrate channeling has previously been shown for bifunctional PutAs, but whether the monofunctional enzymes utilize an analogous channeling mechanism has not been examined. Here, we report the first evidence of substrate channeling in a PRODH-P5CDH two-enzyme pair. Kinetic data for the coupled reaction of PRODH and P5CDH from Thermus thermophilus are consistent with a substrate channeling mechanism, as the approach to steady-state formation of NADH does not fit a non-channeling two-enzyme model. Furthermore, inactive P5CDH and PRODH mutants inhibit NADH production and increase trapping of the P5C intermediate in coupled assays of wild-type PRODH-P5CDH enzyme pairs, indicating that the mutants disrupt PRODH-P5CDH channeling interactions. A dissociation constant of 3 μm was estimated for a putative PRODH-P5CDH complex by surface plasmon resonance (SPR). Interestingly, P5CDH binding to PRODH was only observed when PRODH was immobilized with the top face of its (βα)8 barrel exposed. Using the known x-ray crystal structures of PRODH and P5CDH from T. thermophilus, a model was built for a proposed PRODH-P5CDH enzyme channeling complex. The structural model predicts that the core channeling pathway of bifunctional PutA enzymes is conserved in monofunctional PRODH-P5CDH enzyme pairs.  相似文献   

18.
Currently, there is no effective therapy for cryptosporidiosis and it is unclear why antifolate drugs which are effective treatments for infections caused by closely related parasites are not also effective against Cryptosporidium parvum. In protozoa, the target of these drugs, dihydrofolate reductase (DHFR), exists as a bifunctional enzyme also manifesting thymidylate synthase (TS) activity and is encoded by a fused DHFR-TS gene. In order to prepare a probe to isolate the C. parvum DHFR-TS gene we have used degenerate oligonucleotides whose sequences are based on strongly conserved regions of TS protein sequence to prime the polymerase chain reaction (PCR) with C. parvum DNA. The PCR amplified a 375-bp DNA fragment which was cloned and sequenced; the deduced amino acid sequence had significant identity with known TS sequences, including strict conservation of all phylogenetically invariant TS amino acid residues. The cloned PCR fragment was used as a probe to isolate a number of overlapping clones from a C. parvum genomic library which were definitively shown to be of cryptosporidial origin by genomic Southern and molecular karyotype analyses. The deduced protein sequence of C. parvum TS was most similar to the bifunctional TS enzymes of Plasmodium chabaudi and Plasmodium falciparum.  相似文献   

19.
5-Amino-4-imidazolecarboxamide ribonucleotide transformylase/IMP cyclohydrolase (ATIC) is a bifunctional protein possessing two enzymatic activities that sequentially catalyze the last two steps in the pathway for de novo synthesis of inosine 5'-monophosphate. This bifunctional enzyme is of particular interest because of its potential as a chemotherapeutic target. Furthermore, these two catalytic activities reside on the same protein throughout all of nature, raising the question of whether there is some kinetic advantage to the bifunctionality. Rapid chemical quench, stopped-flow absorbance, and steady-state kinetic techniques were used to elucidate the complete kinetic mechanism of human ATIC. The kinetic simulation program KINSIM was used to model the kinetic data obtained in this study. The detailed kinetic analysis, in combination with kinetic simulations, provided the following key features of the enzyme reaction pathway. 1) The rate-limiting step in the overall reaction (2.9 +/- 0.4 s(-1)) is likely the release of tetrahydrofolate from the formyltransferase active site or a conformational change associated with tetrahydrofolate release. 2) The rate of the reverse transformylase reaction (6.7 s(-1)) is approximately 2-3-fold faster than the forward rate (2.9 s(-1)), whereas the cyclohydrolase reaction is essentially unidirectional in the forward sense. The cyclohydrolase reaction thus draws the overall bifunctional reaction toward the production of inosine monophosphate. 3) There was no kinetic evidence of substrate channeling of the intermediate, the formylaminoimidazole carboxamide ribonucleotide, between the formyltransferase and the cyclohydrolase active sites.  相似文献   

20.
The bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) of Leishmania major has been cloned and expressed in Escherichia coli and Saccharomyces cerevisiae. The strategy involved placing the entire 1560-bp coding sequence into a parent cloning plasmid that was designed to permit introduction of unique restriction sites at the 5'- and 3'-ends. In this manner, the entire coding sequence could be easily subcloned into a variety of expression vectors. High levels of TS-DHFR gene expression were driven by tac, pL and T7 RNA pol promoters in E. coli, and the GAPDH-ADH-2 promoter in S. cerevisiae. L. major TS-DHFR also complemented TS deficiency in E. coli. In E. coli, the protein accumulated to very high levels, but most was present as inactive inclusion bodies. Nevertheless, substantial amounts were soluble; up to 2% of the soluble protein was catalytically active TS-DHFR. In the yeast systems, essentially all of the bifunctional protein was soluble and catalytically active, and crude extracts contained about 100-fold more enzyme than do extracts from wild-type L. major. The expressed TS-DHFR from yeast and E. coli was purified to homogeneity by methotrexate-Sepharose affinity chromatography. About 8.5 mg of homogeneous, catalytically active protein is obtained from a 1-L culture of yeast, and 1.5 mg was obtained from 1 L of E. coli culture. A 200-L fermentation of the yeast expression system yielded a crude extract containing over 4 g of TS-DHFR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号