首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mature T cells are derived from prethymic stem cells, which arise at one or more extrathymic sites and enter and differentiate in the thymus. The nature of these prethymic stem cells is a critical factor for the formation of the T-cell repertoire. Although the bone marrow of adult mice can provide such stem cells, their origin during murine embryogenesis is still undetermined. Among potential sites for these progenitor cells are the fetal liver and the embryonic yolk sac. Our studies focus on the yolk sac, both because the yolk sac appears earlier than any other proposed site, and because the mammalian yolk sac is the first site of hematopoiesis. Although it has been shown that the yolk sac in midgestation contains stem cells that can enter the thymic rudiment and differentiate toward T-cell lineage, our aim was to analyze the developmental potential of cells in the yolk sac from earlier stages, prior to the formation of the liver and any other internal organ. We show here that the yolk sac from 8- and 9-day embryos (2-9 and 13-19 somites, respectively) can reconstitute alymphoid congenic fetal thymuses and acquire mature T-cell-specific characteristics. Specifically, thymocytes derived from the early embryonic yolk sac can progress to the expression of mature T lymphocyte markers including CD3/T-cell receptor (TCR), CD4 and CD8. In contrast, we have been unable to document the presence of stem cells within the embryo itself at these early stages. These results support the hypothesis that the stem cells capable of populating the thymic rudiment originate in the yolk sac, and that their presence as early as at the 2- to 9-somite stage may indicate that prethymic stem cells found elsewhere in the embryo at later times may have been derived by migration from this extra-embryonic site. Our experimental design does not exclude the possibility of multiple origins of prethymic stem cells of which the yolk sac may provide the first wave of stem cells in addition to other later waves of cells.  相似文献   

2.
It is difficult to induce the maturation of embryonic stem (ES) cells into hepatocytes in vitro. We previously reported that Thy1-positive mesenchymal cells derived from the mouse fetal liver promote the maturation of hepatic progenitor cells. Here, we isolated alpha-fetoprotein (AFP)-producing cells from mouse ES cells for subsequent differentiation into hepatocytes in vitro by coculture with Thy1-positive cells. ES cells expressing green fluorescent protein (GFP) under the control of an AFP promoter were cultured under serum- and feeder layer-free culture conditions. The proportion of GFP-positive cells plateaued at 41.6 +/- 12.2% (means +/- SD) by day 7. GFP-positive cells, isolated by flow cytometry, were cultured in the presence or absence of Thy1-positive cells as a feeder layer. Isolated GFP-positive cells were stained for AFP, Foxa2, and albumin. The expression of mRNAs encoding tyrosine amino transferase, tryptophan 2,3-dioxygenase, and glucose-6-phosphatase were only detected following coculture with Thy1-positive cells. Following coculture with Thy1-positive cells, the isolated cells produced and stored glycogen. Ammonia clearance activity was also enhanced following coculture. Electron microscopic analysis indicated that the cocultured cells exhibited the morphologic features of mature hepatocytes. In conclusion, coculture with Thy1-positive cells in vitro induced the maturation of AFP-producing cells isolated from ES cell cultures into hepatocytes.  相似文献   

3.
Kawamorita M  Suzuki C  Saito G  Sato T  Sato K 《Human cell》2002,15(3):178-182
Embryonic stem (ES) cells are pluripotent cells isolated from the inner cell mass of blastocysts. ES cells are able to differentiate into the three primitive layers (endoderm, mesoderm, and ectoderm) of the organism, including the germline. In recent reports mouse ES cells have been successfully applied in the treatment of spinal cord injury, hereditary myelin disorder of the central nervous system, and diabetes mellitus. In this study, we investigated the induction of mouse ES cell differentiation, using culture of embryoid bodies (EBs) into the diverse tissues. EBs were formed by culturing ES cells (129/SV strain) in DMEM supplemented with 10% FBS, in the absence of feeder cells and leukemia inhibitory factor (LF). EBs were induced to differentiate by treatment with retinoic acid (RA). In control medium (non-RA medium) beating muscles, blood vessels, hemocytes, and cartilages were frequently observed in EBs. Moreover, when EBs were cultured in medium including RA (5 x 10(-8) M, and 5 x 10(-9) M), differentiation of the optic vesicle, lens, retina, and neural groove was observed. In this study we demonstrated that an efficient system for inducing the differentiation of ES cells using EBs.  相似文献   

4.
5.
By removing a small amount of yolk, tilapia embryos were dechorionated successfully as early as 30 h after fertilization. Using DASPEI, a mitochondrion-specific fluorescent stain, we were able to determine the first appearance of the mitochondrion rich cells on the surface of the yolk sac 26 h after fertilization ( c. 2 h after the beginning of gastrula stage). However, with scanning electron microscopy examination, no apical crypt could be found until 48 h after fertilization.  相似文献   

6.
Summary Mouse visceral yolk sac has been organ cultured from 9 days of gestation, a time prior to the thymus being lymphoid, until 12 days of gestation, a time after which the thymus is lymphoid. During the culture period the endodermal epithelial cells survived well, erythropoiesis diminished, endothelial-lined cavities formed in the mesodermal mass, and cells developed which have been classified as large, medium and small immunocyte precursors. The cytoplasm of the immunocyte precursors contains polysomes, spherical mitochondria, a few profiles of rough endoplasmic reticulum, occasional granules and a large Golgi complex. This study offers morphological support for the yolk sac origin of immunocyte precursors in the mouse which may seed the thymus and liver.Supported by NIH Grant AI 13486-01  相似文献   

7.
Pioneer work in male mouse embryonic stem (ES) cells differentiation into germ cells (GC) showed generations of male or female gametes in separate experiments, using genetically manipulated or preselected ES cells. In an attempt to produce both types of gametes from male mouse ES cells without any genetic manipulation or preselection, we induce the differentiation by retinoic acid (RA) within nonadherent embryoid bodies (EB). It seems that gamete-like cell formation occurs in the correct manner based on the expression of early and late GC-specific genes such as Oct-4, Mvh, Stella, Dazl, Piwil 2, Pdrd 1, Rex 14, Rnf 17, Bmp8b, Acrosin, Stra-8, Haprin, LH-R, Gdf9, Zp3, Zp2, Sycp1, and Sycp3. Immunofluorescence analysis of morphologically well-formed GC and presumptive gametes showed positive labeling for SSEA1, Oct-4, EMA-1, FE-J1, Dazl, Fragilis, Mvh, Acrosin, and acetylated alpha-tubulin. Conventional cytogenetic and FISH analysis indicated a chromosome reduction in ES-derived GC. Our data suggest that ES cells with XY chromosomes can produce under the same experimental conditions both types of presumptive gametes, and this production depends on their positional and temporal information within the EB context.  相似文献   

8.
Experiments were performed to investigate the presence of colony-forming units (CFU) in the mouse embryonic yolk sac during the developmental period in which the yolk sac is the sole hemopoietic organ. Injection of yolk sac cell suspensions from normal embryos into syngeneic, lethally irradiated adult recipients evoked a very low number of spleen colonies. However, prior cultivation of yolk sacs in vitro caused a dramatic increase in the spleen colony-forming capacity--as high as 84-fold--following 48 hours in culture. The yolk sac origin of the spleen colonies was confirmed by: (a) Chromosomal marker analysis; (b) dose-response analysis; (c) demonstrating that the above colonies were not of endogenous origin induced by the mere injection of grafted cells. We conclude that the yolk sac contains many precursors of colony-forming cells which though undetectable by immediate grafting apparently become activated in culture by an as yet unknown induction process.  相似文献   

9.
10.
11.
12.
人胚胎干细胞(human embryonic stem cells,hESCs)由囊胚期胚胎内细胞团分离培养获得,具有保持未分化状态的无限增殖能力。hESCs具有多向分化潜能,在体内和体外均可分化形成所有三个胚层(外胚层、中胚层、内胚层)的衍生物。hESCs一般在鼠胚胎成纤维细胞(mouse embryonic fibroblast,MEF)饲养层上培养和扩增。为了优化培养条件,目前人们已发展了多种人类细胞饲养层和无饲养层、非条件培养基体系。hESCs可以在体外定向诱导分化为多种细胞类型,为揭示人胚早期发育机制和发展多种疾病的细胞移植治疗奠定了基础。hESCs可以在体外进行遗传修饰,将有助于揭示特定基因在发育过程中的调控和功能。对hESCs的深入研究将极大地推动医学和生命科学的进展,并将最终应用于临床,造福人类。  相似文献   

13.
Embryonic stem (ES) cells are omnipotent; they can differentiate into every cell type of the body. The development of culture conditions that allow their differentiation has made it conceivable to produce large numbers of cells with lineage-specific characteristics in vitro. Here, we describe a method by which murine ES cells can be differentiated into cells with characteristics of epidermal keratinocytes. Keratinocyte-like cells were isolated from embryoid bodies and grown in culture. Potential applications of this method are the in vitro differentiation of cells of interest from ES cells of mice with lethal phenotypes during embryonic development and the production of genetically modified epidermal keratinocytes that could be used as temporary wound dressing or as carriers of genes of interest in gene therapeutic treatments.  相似文献   

14.
15.
In vitro neuronal differentiation of cultured human embryonic germ cells   总被引:8,自引:0,他引:8  
Human embryonic germ (hEG) cells, which have been advanced as one of the most important sources of pluripotent stem cells [the other one being human embryonic stem cells], can be propagated in vitro indefinitely in the primitive undifferentiated state while being capable of developing into all three germ layer derivatives, hence have become anticipated developing novel strategies of tissue regeneration and transplantation in the treatment of degenerative diseases. In the experiments here, we derived hEG cells from cultured human primordial germ cells (PGCs) of 6- to 9-week-post-fertilization embryos. They satisfied the criteria previously used to define hEG cells, including the expression of markers characteristic of pluripotent cells-abundant alkaline phosphatase (AP) activity, stage specific embryonic antigen (SSEA)-1(+), SSEA-3(-), SSEA-4(+), TRA-1-60(+), TRA-1-81(+), Oct-4(+), and hTERT(+), the retention of normal karyotypes, and possessing pluripotency by forming embryoid bodies (EBs) in vitro. Furthermore, these derived cells tended to neurally differentiate in vitro, especially under high-density culture conditions. We successfully isolated neural progenitor cells from differentiating hEG cultures and about 10% cells induced by 2microM all-trans-retinoic acid (RA) or 0.1mM dibutyryl cyclic AMP (dbcAMP)/1mM forskolin to mature neurons expressing microtubule-associated protein 2ab (MAP2ab), synaptophysin, beta-tubulin III, neuron-specific enolase (NSE), tyrosine hydroxylase (TH), but no glial fibrillary acid protein (GFAP) and choline acetyl transferase (ChAT). The data suggested that hEG cells may provide a potential source of cells for use in transplantation therapy for neurological degenerative diseases.  相似文献   

16.
The yolk sac of the 12-day chicken embryo retains the blast stage progenitors to cells of the myeloid lineages with a very low level of contamination by more mature myeloid cells which have begun to express the characteristic myeloid cell markers. Both in vivo and in vitro experiments have supported the hypothesis that target cells for the BAI-A strain of avian myeloblastosis virus are contained within the myeloid lineages. An assay system for avian myeloblastosis virus was developed which utilizes this yolk sac cell system and which appears to be more sensitive than previous published assays. In addition, the kinetics of a liquid culture transformation system is presented in which at least 4% of the yolk sac cell population was transformed in a relatively synchronous fashion at 2 days after infection. The morphological transformation preceded an increased rate of cell proliferation. Cell separation procedures provided a 10- to 20-fold enrichment of target cells and demonstrated that the target cell population copurifies with macrophage colony-forming cells which are the committed progenitors to the macrophage lineage. In combination with earlier work, this work demonstrated that cells committed to the macrophage lineage at all stages of differentiation may serve as target cells for infection by avian myeloblastosis virus.  相似文献   

17.
A comparative analysis of the teratogenic effects of L-asparaginase on 10.5- and 11.5-day rat embryos after 24 and 48 hours of exposure in vitro, respectively, were performed. Several medium concentrations of L-asparaginase (0.05, 0.25, and 1.5 IU/ml) were tested in both embryo series. Resulting embryos were submitted to morphological studies in a search for a specific route of pathogenesis. Morphological alterations of the visceral yolk sac were also studied to investigate its contribution to L-asparaginase teratogenicity in rats. Main embryonic malformations (open truncal neural tube, open encephalic vesicles, anophthalmia, lack of inversion, abnormal frontolateral protrusions, great vascular dilations at the cephalic level) and developmental retardation were already generated after the first 24 hours of culture (embryos of 10.5 days) and presented a dose-response relationship. Vascular dilations and neurulation disturbances seemed to be related to an early mesenchyme deficiency. Reduced number of mesenchymal cells was more evident in embryos of 10.5 days than those of 11.5 days, suggesting the existence of a later compensatory mechanism of cellular proliferation in the older embryo. Visceral yolk-sac endodermal cells at both embryonic stages were greatly deformed and enlarged by an increase of the high electron-dense vacuolar system. Therefore, both a blockage of the processes of lysosomal digestion and derived trophic deficiencies probably existed. A double teratogenic mechanism for L-asparaginase is postulated: a direct action mainly in younger embryos (before invagination of the embryo into the yolk sac) and a yolk sac-mediated one.  相似文献   

18.
Cao N  Liao J  Liu Z  Zhu W  Wang J  Liu L  Yu L  Xu P  Cui C  Xiao L  Yang HT 《Cell research》2011,21(9):1316-1331
The recent breakthrough in the generation of rat embryonic stem cells (rESCs) opens the door to application of gene targeting to create models for the study of human diseases. In addition, the in vitro differentiation system from rESCs into derivatives of three germ layers will serve as a powerful tool and resource for the investigation of mammalian development, cell function, tissue repair, and drug discovery. However, these uses have been limited by the difficulty of in vitro differentiation. The aims of this study were to establish an in vitro differentiation system from rESCs and to investigate whether rESCs are capable of forming terminal-differentiated cardiomyocytes. Using newly established rESCs, we found that embryoid body (EB)-based method used in mouse ESC (mESC) differentiation failed to work for the serum-free cultivated rESCs. We then developed a protocol by combination of three chemical inhibitors and feeder-conditioned medium. Under this condition, rESCs formed EBs, propagated and differentiated into three embryonic germ layers. Moreover, rESC-formed EBs could differentiate into spontaneously beating cardiomyocytes after plating. Analyses of molecular, structural, and functional properties revealed that rESC-derived cardiomyocytes were similar to those derived from fetal rat hearts and mESCs. In conclusion, we successfully developed an in vitro differentiation system for rESCs through which functional myocytes were generated and displayed phenotypes of rat fetal cardiomyocytes. This unique cellular system will provide a new approach to study the early development and cardiac function, and serve as an important tool in pharmacological testing and cell therapy.  相似文献   

19.
The treatment of an embryoid body with spermine for a short duration can trigger the generation of a 3-dimensional multilayer myotube sheet (MMTS) that shows pulsatile activity. MMTS was previously characterized as a model of skeletal muscle tissue. In the present work, the insulin responsiveness of MMTS was investigated because it is an essential function for a model of skeletal muscle. The glucose uptake activity of MMTS was analyzed by confocal microscopy using fluorescent glucose analogs, namely 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) and its l-glucose counterpart, 2-NBDLG. The specific uptake rate of glucose was estimated from the difference between the fluorescent signals of 2-NBDG and 2-NBDLG. It was enhanced by insulin stimulation to 3.6 times higher than the control without insulin, and this insulin responsiveness was maintained for 5 days. The advantages of the 3-dimensional structure of MMTS are discussed in the contexts of its potential in vivo and in vitro uses.  相似文献   

20.
Hearing loss is mainly caused by loss of sensory hair cells (HCs) in the organ of Corti or cochlea. Although embryonic stem (ES) cells are a promising source for cell therapy, little is known about the efficient generation of HC-like cells from ES cells. In the present study, we developed a single-medium culture method for growing embryoid bodies (EBs), in which conditioned medium (CM) from cultures of ST2 stromal cells (ST2-CM) was used for 14-day cultures of 4-day EBs. At the end of the 14-day cultures, up to 20% of the cells in EB outgrowths expressed HC-related markers, including Math1 (also known as Atoh1), myosin6, myosin7a, calretinin, α9AchR and Brn3c (also known as Pou4f3), and also showed formation of stereocilia-like structures. Further, we found that these cells were incorporated into the developing inner ear after transplantation into chick embryos. The present inner ear HC induction method using ST2-CM (HIST2 method) is quite simple and highly efficient to obtain ES-derived HC-like cells with a relatively short cultivation time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号