共查询到20条相似文献,搜索用时 15 毫秒
1.
Losses of grasslands have been largely attributed to widespread land-use changes, such as conversion to row-crop agriculture. The remaining tallgrass prairie faces further losses due to biological invasions by non-native plant species, often with resultant ecosystem degradation. Of critical concern for conservation, restoration of native grasslands has been met with little success following eradication of non-native plants. In addition to the direct and indirect effects of non-native invasive plants on beneficial soil microbes, management practices targeting invasive species may also negatively affect subsequent restoration efforts. To assess mechanisms limiting germination and survival of native species and to improve native species establishment, we established six replicate plots of each of the following four treatments: (1) inoculated with freshly collected prairie soil with native seeds; (2) inoculated with steam-pasteurized soil with native seeds; (3) noninoculated with native seeds; or (4) noninoculated/nonseeded control. Inoculation with whole soil did not improve seed germination; however, addition of whole soil significantly improved native species survival, compared to pasteurized soil or noninoculated treatments. Inoculation with whole soil significantly decreased reestablishment of non-native invasive Bothriochloa bladhii (Caucasian bluestem); at the end of the growing season, plots receiving whole soil consisted of approximately 30% B. bladhii cover, compared to approximately 80% in plots receiving no soil inoculum. Our results suggest invasion and eradication efforts negatively affect arbuscular mycorrhizal hyphal and spore abundances and soil aggregate stability, and inoculation with locally adapted soil microbial communities can improve metrics of restoration success, including plant species richness and diversity, while decreasing reinvasion by non-native species. 相似文献
2.
Little of the historical extent of tallgrass prairie ecosystems remains in North America, and therefore there is strong interest in restoring prairies. However, slow‐growing prairie plants are initially weak competitors with the fast‐growing yet short‐lived weedy plant species that are typically abundant in recently established prairie restorations. One way to aid establishment of slow‐growing plant species is through adding soil amendments to prairie restorations before planting. Arbuscular mycorrhizal (AM) fungi form mutualisms with the roots of most terrestrial plants and are particularly important for the growth of slow‐growing prairie plant species. As prairie ecosystems are adapted to fires that leave biochar (charred organic material) in the soil, adding biochar as well as AM fungal strains from undisturbed remnant prairies into the soil of prairie restorations may improve restoration outcomes. Here, we test this prediction during the first four growing seasons of a prairie restoration. When prairie plant seedlings were inoculated prior to planting into the field with AM fungi derived from remnant prairies, that one‐time inoculation significantly increased growth of five of the nine tested plant species through at least two growing seasons. This long‐term benefit of AM fungal inoculation was unaffected by biochar addition to the soil. Biochar application rates of at least 10 tons/ha significantly decreased Coreopsis tripteris growth but acted synergistically with AM fungal inoculation to significantly improve survival of Schizachyrium scoparium. Overall, inoculation with native AM fungi can help promote prairie plant establishment, but concomitant use of biochar soil amendments had relatively little effect. 相似文献
3.
An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil 总被引:8,自引:0,他引:8
Most work on root proliferation to a localized nutrient supply has ignored the possible role of mycorrhizal fungi, despite their key role in nutrient acquisition. Interactions between roots of Plantago lanceolata , an added arbuscular mycorrhiza (AM) inoculum and nitrogen capture from an organic patch ( Lolium perenne shoot material) dual-labelled with 15 N and 13 C were investigated, to determine whether root proliferation and nitrogen (N) capture was affected by the presence of AM fungi. Decomposition of the organic patch in the presence and absence of roots peaked in all treatments at day 3, as shown by the amounts of 13 CO2 detected in the soil atmosphere. Plant N concentrations were higher in the treatments with added inoculum 10 d after patch addition, but thereafter did not differ among treatments. Plant phosphorus concentrations at the end of the experiment were depressed by the addition of the organic residue in the absence of mycorrhizal inoculum. Although uninoculated plants were also colonized by mycorrhizal fungi, colonization was enhanced at all times by the added inoculum. Addition of the AM inoculum increased root production, observed in situ by the use of minirhizotron tubes, most pronouncedly within the organic patch zone. Patch N capture by the end of the experiment was c . 7.5% and was not significantly different as a result of adding an AM inoculum. Furthermore, no 13 C enrichments were detected in the plant material in any of the treatments showing that intact organic compounds were not taken up. Thus, although the added AM fungal inoculum benefited P. lanceolata seedlings in terms of P concentrations of tissues it did not increase total N capture or affect the form in which N was captured by P. lanceolata roots. 相似文献
4.
Michael R. Ngugi Nigel Fechner Victor J. Neldner Paul G. Dennis 《Restoration Ecology》2020,28(3):543-552
Soil disruption from open‐cut mining practices can adversely impact microbial communities and the ecosystem services that they mediate. Despite this, assessment of impacts of soil disruption, and the subsequent recovery of microbial communities is rarely studied. Monitoring of ecological restoration success on mine sites has traditionally focused on vegetation; however, most plants rely, at least in part, on associations with soil fungi for enhanced nutrient and water acquisition. Here, we used high‐throughput phylogenetic marker gene sequencing to characterize the diversity of soil fungal communities along a restoration chronosequence ranging from 3 to 23 years at a rehabilitated mine site. We used nonmined analogue sites as a baseline for comparative purposes and examined the associations of soil fungal communities with soil physicochemical and aboveground vegetation variables. Fungal richness on rehabilitated sites was significantly larger than on nonmined sites, suggesting that mixing of topsoil during stockpiling resulted in a composite microbial community. Fungal community composition was significantly influenced by edaphic variables and the length of rehabilitation, with mined sites becoming more similar to nonmined sites over time. Fungal populations associated with ectomycorrhizae were relatively more abundant than those associated with arbuscular mycorrhizae and declined in response to disturbance, but recovered over time on the woody dominated sites indicating a strong coupling of these fungi with aboveground vegetation. Our data indicate that soil fungal diversity is a useful bioindicator of soil restoration in mined sites and may complement more traditional vegetation‐based surveys. 相似文献
5.
6.
弱化的植物-土壤生物共生关系降低了一年生入侵植物与本地物种的竞争能力
植物与土壤生物,特别是与丛枝菌根真菌(AMF)的关系,可能对外来植物在新环境中的建立和扩张发挥着至关重要的作用。但是,植物对AMF的依赖是否会在入侵后发生变化,及其如何影响与本 地物种的竞争仍然知之甚少。通过同质园实验,我们研究了入侵物种北美车前(Plantago virginica)的原产地(美国)和入侵地(中国)种群对AMF的响应,以及在有无竞争者的情况下这些响应是否发生变化。研究结果显示,原产地种群始终具有较高的AMF侵染率,并且其生物量和种子产量都受益于AMF。不同的是, 入侵地种群从AMF中获得的收益较少,甚至在存在竞争者的情况下,AMF的侵染使得入侵种群的生物量有所降低。入侵种群的这种低菌根依赖度可能与受到本地竞争者的更大抑制作用有关。北美车前入侵地和原产地种群对AMF的不同响应表明,其对菌根真菌的依赖性在入侵中国的过程中发生了改变。我们的发现表明,这种减少的依赖性会使入侵植物在种间竞争中付出一定的代价。 相似文献
7.
Community‐level plant–soil feedbacks explain landscape distribution of native and non‐native plants 下载免费PDF全文
Andrew Kulmatiski 《Ecology and evolution》2018,8(4):2041-2049
Plant–soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short‐term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non‐native species, or a mixed plant community in different plots in a common‐garden experiment. After 4 years, plants were removed and one native and one non‐native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non‐native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non‐native, Centaurea diffusa, and non‐native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata. Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common‐garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non‐native plant community on non‐native soils. In contrast, when PSF effects were removed, the model predicted that non‐native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank‐order abundance of native and non‐native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors through soil‐mediated effects. 相似文献
8.
Jonathan A. Bennett Alexander M. Koch Jennifer Forsythe Nancy C. Johnson David Tilman John Klironomos 《Ecology letters》2020,23(1):119-128
Plant diversity is critical to the functioning of ecosystems, potentially mediated in part by interactions with soil biota. Here, we characterised multiple groups of soil biota across a plant diversity gradient in a long‐term experiment. We then subjected soil samples taken along this gradient to drought, freezing and a mechanical disturbance to test how plant diversity affects the responses of soil biota and growth of a focal plant to these disturbances. High plant diversity resulted in soils that were dominated by fungi and associated soil biota, including increased arbuscular mycorrhizal fungi and reduced plant‐feeding nematodes. Disturbance effects on the soil biota were reduced when plant diversity was high, resulting in higher growth of the focal plant in all but the frozen soils. These results highlight the importance of plant diversity for soil communities and their resistance to disturbance, with potential feedback effects on plant productivity. 相似文献
9.
10.
Tree mycorrhizal type predicts within‐site variability in the storage and distribution of soil organic matter 下载免费PDF全文
Matthew E. Craig Benjamin L. Turner Chao Liang Keith Clay Daniel J. Johnson Richard P. Phillips 《Global Change Biology》2018,24(8):3317-3330
Forest soils store large amounts of carbon (C) and nitrogen (N), yet how predicted shifts in forest composition will impact long‐term C and N persistence remains poorly understood. A recent hypothesis predicts that soils under trees associated with arbuscular mycorrhizas (AM) store less C than soils dominated by trees associated with ectomycorrhizas (ECM), due to slower decomposition in ECM‐dominated forests. However, an incipient hypothesis predicts that systems with rapid decomposition—e.g. most AM‐dominated forests—enhance soil organic matter (SOM) stabilization by accelerating the production of microbial residues. To address these contrasting predictions, we quantified soil C and N to 1 m depth across gradients of ECM‐dominance in three temperate forests. By focusing on sites where AM‐ and ECM‐plants co‐occur, our analysis controls for climatic factors that covary with mycorrhizal dominance across broad scales. We found that while ECM stands contain more SOM in topsoil, AM stands contain more SOM when subsoil to 1 m depth is included. Biomarkers and soil fractionations reveal that these patterns are driven by an accumulation of microbial residues in AM‐dominated soils. Collectively, our results support emerging theory on SOM formation, demonstrate the importance of subsurface soils in mediating plant effects on soil C and N, and indicate that shifts in the mycorrhizal composition of temperate forests may alter the stabilization of SOM. 相似文献
11.
Emily Grman Jamie Allen Emily Galloway Justin McBride Jonathan T. Bauer Paul A. Price 《Restoration Ecology》2020,28(Z4):S393-S399
Restoring the diversity of plant species found in remnant communities is a challenge for restoration practitioners, in part because many reintroduced plant species fail to establish in restored sites. Legumes establish particularly poorly, perhaps because they depend on two guilds of soil microbial mutualists, rhizobial bacteria and arbuscular mycorrhizal (AM) fungi, that may be absent from restored sites. We tested the effect of soil microorganisms from remnant and restored prairies on legume growth by inoculating seedlings of Lespedeza capitata, Amorpha canescens, and Dalea purpurea with soil from 10 restored prairies and 6 remnant (untilled) prairies from southwest Michigan. We generally found support for the hypothesis that restored prairie soils lack microbes that enhance prairie plant growth, although there was variation across species and mutualist guilds. All three legumes grew larger and two legumes (Lespedeza and Amorpha) produced more nodules when inoculated with soil from remnant prairies, suggesting that low quantity and/or quality of rhizobial partners may limit the establishment of those species in restored prairies. In contrast, no legume experienced greater root colonization by AM fungi in remnant prairie soils, suggesting equivalent quantity (but not necessarily quality) of fungal partners in remnant and restored prairie soils. We detected no evidence of spontaneous recovery of the community of beneficial soil microbes in restorations. These results suggest that the absence of rhizobia, a largely overlooked component of prairie soils, could play a strong role in limiting restored prairie diversity by hindering legume establishment. Active reintroduction of appropriate rhizobial strains could enhance prairie restoration outcomes. 相似文献
12.
Plant response to biochar,compost, and mycorrhizal fungal amendments in post‐mine sandpits 下载免费PDF全文
Brian M. Ohsowski Kari Dunfield John N. Klironomos Miranda M. Hart 《Restoration Ecology》2018,26(1):63-72
Extreme growing conditions inhibit restoration in sandpit mines. Co‐amendment of soil conditioners such as biochar, compost, and arbuscular mycorrhizal fungi (AMF) may alleviate these stresses and lead to a more successful restoration. We conducted a multiyear restoration experiment in a sandpit in Southern Ontario, Canada, following industrial‐scale grassland restoration protocols. The sandpit substrate was sand with low carbon (C) and nutrients. We tested the effect of biochar, compost, and AMF inoculum in two experiments (plant plugs vs. seed application). In the plant plug trial, we investigated the treatment effects on the growth of eight grassland plant species and colonization of plant roots by AMF over two growing seasons. We found that co‐amending soils with compost plus biochar (20 T/ha + 10 T/ha) was more beneficial than other amendment combinations. Amendments including AMF were not more beneficial to plant growth than those without AMF. In the seed application trial, direct inoculation of AMF in the field combined with high compost addition (20 T/ha or 40 T/ha) resulted in the highest plant cover compared to other treatment combinations. Our results indicate that co‐amending sandpit substrates with biochar, compost, and AMF are practical restoration tools that enhance grassland restoration. 相似文献
13.
Meredith A. Zettlemoyer Elizabeth H. Schultheis Jennifer A. Lau 《Ecology letters》2019,22(8):1253-1263
Phenology is a harbinger of climate change, with many species advancing flowering in response to rising temperatures. However, there is tremendous variation among species in phenological response to warming, and any phenological differences between native and non‐native species may influence invasion outcomes under global warming. We simulated global warming in the field and found that non‐native species flowered earlier and were more phenologically plastic to temperature than natives, which did not accelerate flowering in response to warming. Non‐native species' flowering also became more synchronous with other community members under warming. Earlier flowering was associated with greater geographic spread of non‐native species, implicating phenology as a potential trait associated with the successful establishment of non‐native species across large geographic regions. Such phenological differences in both timing and plasticity between native and non‐natives are hypothesised to promote invasion success and population persistence, potentially benefiting non‐native over native species under climate change. 相似文献
14.
15.
The use of Technosols for the restoration of limestone quarries overcomes the usual “in situ” scarcity of soil and/or its poor quality. The use of mine spoils, improved with mineral and/or organic amendments, could be an efficient and environmentally friendly option. Properly treated sewage sludge from urban wastewater treatment plants could be a suitable organic amendment and fertilizer (rich in N and P) whenever its pollutant burden is low (heavy metals and/or organic pollutants). Its appropriate use could improve essential soil physical and chemical properties and, therefore, promote key ecosystem services of restored areas, such as biomass production and carbon sequestration, as well as biodiversity and landscape recovery. However, the mid‐term impacts of these restoration practices on soil functioning and their services have rarely been reported in the available literature. In this study we assess the mid‐term effects (10 years) of the use of sewage sludge as a Technosol amendment on soil organic carbon (SOC), nutrient status, and plant development in several restored quarries. Soils restored using sewage sludge showed a threefold increase in SOC compared to the corresponding unamended ones, despite the moderate sludge dosage applied (below 50 tonnes/ha). Plant cover was also higher in amended soils, and recruitment was not affected by sludge amendment at these doses. This study demonstrates that, used at an appropriate rate, sewage sludge is a good alternative for the valorization of mine spoils in quarry restoration, improving some important regulatory ecosystem services such as carbon sequestration, without compromising woody plant encroachment. 相似文献
16.
Continental‐scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks 下载免费PDF全文
Most tree roots on Earth form a symbiosis with either ecto‐ or arbuscular mycorrhizal fungi. Nitrogen fertilization is hypothesized to favor arbuscular mycorrhizal tree species at the expense of ectomycorrhizal species due to differences in fungal nitrogen acquisition strategies, and this may alter soil carbon balance, as differences in forest mycorrhizal associations are linked to differences in soil carbon pools. Combining nitrogen deposition data with continental‐scale US forest data, we show that nitrogen pollution is spatially associated with a decline in ectomycorrhizal vs. arbuscular mycorrhizal trees. Furthermore, nitrogen deposition has contrasting effects on arbuscular vs. ectomycorrhizal demographic processes, favoring arbuscular mycorrhizal trees at the expense of ectomycorrhizal trees, and is spatially correlated with reduced soil carbon stocks. This implies future changes in nitrogen deposition may alter the capacity of forests to sequester carbon and offset climate change via interactions with the forest microbiome. 相似文献
17.
ANDRÉS G. ROLHAUSER MARÍA J. D'ANTONI M. GABRIEL GATICA EDUARDO PUCHETA 《Austral ecology》2013,38(1):87-94
Deserts shrubs are well known to facilitate vegetation aggregation, mostly through seed trapping, and stress amelioration during and after plant establishment. Because vegetation aggregation effects are a by‐product of shrub presence, beneficiary species may not only be native, but also exotic. However, despite the high risk that exotic invasive species pose to ecosystem services, little is known of the role of desert shrubs on plant invasions. We assessed the influence of two shrub species on the non‐dormant soil seed bank (i.e. the number of seeds that readily germinate with sufficient water availability) of an invasive annual grass (Schismus barbatus) and of coexisting native species in a central‐northern Monte Desert (Argentina). Soil samples were collected beneath the canopies of two dominant shrub species (Bulnesia retama and Larrea divaricata) and in open spaces (i.e. intercanopies) in May 2001. Overall, the density of germinated seedlings of Schismus and that of the native species were negatively associated across microsite types. Schismus density was similar to that of all native species pooled together (mostly annuals), and was highest in Larrea samples (with no significant differences between Bulnesia and intercanopies). On the contrary, the density of all native species pooled together was highest in Bulnesia samples. Our results suggest that shrubs may contribute to plant invasions in our study system but, most importantly, they further illustrate that this influence can be species specific. Further research is needed to assess the relative importance of in situ seed production (and survival) and seed redistribution on soil seed bank spatial patterns. 相似文献
18.
Godar Sene Mansour Thiao Anicet Manga Aboubacry Kane Ramatoulaye Samba‐Mbaye Mame Samba Mbaye Damase Khasa Samba Ndao Sylla 《African Journal of Ecology》2012,50(2):218-232
Several fast‐growing and multipurpose trees such as exotic and valuable native species have been widely used in West Africa to reverse the tendency of massive degradation of plant cover and restore soil productivity. Although benefic effects have been reported on soil stabilization, a lack of information about their impact on soil symbiotic microorganisms still remains. This investigation has been carried out in field trees of 28 years old in a forest reserve at Bandia. To determine the mycorrhizal inoculum potential (MIP) of soils, a mycorrhizal bioassay was conducted using seedlings of Zea mays L. Spores concentration, arbuscular mycorrhizal (AM) fungi morphotypes and mycorrhizal colonization of field plants were examined. Results showed that fungal communities were dominated in all samples by the genus Glomus. Nevertheless, the others genera Gigaspora and Scutellospora occurred preferentially out of the plantations. The number and richness of spores as well as the MIP of soils were decreased in the tree plantations. Accordingly, the amount of annual herbaceous plants kept out of the tree plantations was much greater than those under the tree plantations. The colonization was higher in field root systems of herb plants in comparison with that of the tree plants. Comparisons allowed us to conclude that vegetation type modifies the AM fungal communities, and the results suggest further adoption of management practices that could improve or sustain the development of herbaceous layers and thus promote the AM fungal communities. 相似文献
19.
20.
S.L. Bithell R.C. Butler S. Harrow A. McKay M.G. Cromey 《The Annals of applied biology》2011,159(2):252-266
Two field trials were conducted to investigate different herbage grasses and cereals for their susceptibility to the disease take‐all, for their impact on concentrations of the pathogen, Gaeumannomyces graminis var. tritici (Ggt), in soil and for their effect on development of take‐all in a subsequent wheat crop. In the herbage grass trial, Bromus willdenowii was highly susceptible to Ggt, produced the greatest post‐senescence Ggt concentrations in soil and highest incidence of take‐all in following wheat crop. Lolium perenne, Lolium multiflorum and Festuca arundinacea supported low Ggt soil concentrations and fallow the least. The relationship between susceptibility to Ggt and post‐senescence concentrations in soil differed between pasture grasses and cereals. In a trial in which Ggt was added to half the plots and where wheat, barley, triticale, rye or fallow were compared, the susceptibility of the cereals to take‐all was not clearly linked to post‐harvest soil Ggt concentrations. In particular, triticale and rye had low and negligible take‐all infection respectively, but greater post‐harvest soil Ggt concentrations than barley or wheat. This indicates that low Ggt concentrations on roots may build up during crop senescence on some cereals. Soil Ggt concentrations were greater following harvest in inoculated plots sown to cereals, but in the second year there was more take‐all in the previously non‐inoculated than inoculated plots. Thus, the grass and cereal species differed in susceptibility to take‐all, in their impact on Ggt multiplication and in associated take‐all severity in following wheat crop. 相似文献