首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Native biodiversity is threatened by invasive species in many terrestrial and marine systems, and conservation managers have demonstrated successes by responding with eradication or control programs. Although invasive species are often the direct cause of threat to native species, ecosystems can react in unexpected ways to their removal or reduction. Here, we use theoretical models to predict boom‐bust dynamics, where the removal of predatory or competitive pressure from a native herbivore results in oscillatory population dynamics (boom‐bust), which can endanger the native species’ population in the short term. We simulate control activities, applied to multiple theoretical three‐species Lotka‐Volterra ecosystem models consisting of vegetation, a native herbivore, and an invasive predator. Based on these communities, we then develop a predictive tool that—based on relative parameter values—predicts whether control efforts directed at the invasive predator will lead to herbivore release followed by a crash. Further, by investigating the different functional responses, we show that model structure, as well as model parameters, are important determinants of conservation outcomes. Finally, control strategies that can mitigate these negative consequences are identified. Managers working in similar data‐poor ecosystems can use the predictive tool to assess the probability that their system will exhibit boom‐bust dynamics, without knowing exact community parameter values.  相似文献   

2.
The impacts of domesticated herbivores on ecosystems that did not evolve with mammalian grazing can profoundly influence community composition and trophic interactions. Also, such impacts can occur over long time frames by altering successional vegetation trajectories. Removal of domesticated herbivores to protect native biota can therefore lead to unexpected consequences at multiple trophic levels for native and non-native species. In the eastern South Island of New Zealand large areas of seral grassland–shrubland have had livestock (sheep and cattle) removed following changes in land tenure. The long-term (>10 years) outcomes for these communities are complex and difficult to predict: land may return to a native-dominated woody plant community or be invaded by exotic plants and mammals. We quantified direct and indirect effects of livestock removal on this ecosystem by comparing plant and invasive mammal communities at sites where grazing by livestock ceased c.10–35 years ago (conservation sites) with paired sites where pastoralism has continued to the present (pastoral sites). There was higher total native plant richness and reduced richness of exotic plants on conservation sites compared with pastoral sites. Further, there were differences in the use of conservation and pastoral sites by invasive mammals: rabbits and hedgehogs favoured sites grazed by livestock whereas house mice, brushtail possums and hares favoured conservation sites. Changes in the relative abundance of invasive mammal species after removal of domesticated livestock may compromise positive outcomes for conservation in successional plant communities with no evolutionary history of mammalian grazing.  相似文献   

3.
Determining how various factors contribute to the invasibility of systems is essential for both understanding community formation and informing management of natural areas. Research demonstrating that predators can provide biotic resistance to invasions by consuming invasive species has led to the presence of healthy predator populations being associated with reduced invasion potential of ecosystems. However, predators structure communities in many ways and their presence could also potentially facilitate invasions if they decrease populations of native species that compete with or consume an invader. We considered these two impacts of predators on invasion by analyzing the effects of two keystone predators (Pisaster spp. and Enhydra lutris nereis) on two foundation species (a native mussel Mytilus californianus and the invasive exotic bryozoan Watersipora subtorquata, a putative competitor for space with Mytilus californianus). Both native predators were found to facilitate the invasion of the exotic bryozoan, and the rate of invasion was highest when both predators were present. Facilitation of W. subtorquata occurred via indirect mechanisms that partly involved the removal of a competitor (mussels) via predation. These results illustrate that although predators can provide biotic resistance to invasion, healthy predator populations do not always confer this advantage and in fact may facilitate invasions. Therefore, implementation of management actions to enhance populations of top predators could also potentially increase the invasibility of some ecosystems.  相似文献   

4.
Introduced predators can have profound impacts on prey populations, with subsequent ramifications throughout entire ecosystems. However, studies of predator–prey interaction strengths in community and food-web analyses focus on adults or use average body sizes. This ignores ontogenetic changes, or lack thereof, in predatory capabilities over the life-histories of predators. Additionally, large individual predators might not be physically capable of consuming very small prey individuals. Both situations are important to resolve, as native prey may or may not therefore experience ontogenetic or size refuges from invasive predators. Here, we find that the freshwater amphipod invader, Gammarus pulex, is predatory throughout its development from juvenile through to adult. All size classes collected in the field had a common prey, nymphs of the mayfly Baetis rhodani, in their guts. In an experiment with predator, prey and experimental arenas scaled for body size, G. pulex juveniles and adults consumed B. rhodani in all size-matched categories. In a second experiment, the largest G. pulex individuals were able to prey on the smallest B. rhodani. Thus, the prey do not benefit from any ontogenetic or size refuge from the predator. This corroborates with the known negative population abundance relationships between this invasive predator and its native prey species. Understanding and predicting invasive predator impacts will be best served when interactions among all life-history stages of predator and prey are considered.  相似文献   

5.
Antipredator behaviour is an important fitness component in most animals. A co-evolutionary history between predator and prey is important for prey to respond adaptively to predation threats. When non-native predator species invade new areas, native prey may not recognise them or may lack effective antipredator defences. However, responses to novel predators can be facilitated by chemical cues from the predators’ diet. The red swamp crayfish Procambarus clarkii is a widespread invasive predator in the Southwest of the Iberian Peninsula, where it preys upon native anuran tadpoles. In a laboratory experiment we studied behavioural antipredator defences (alterations in activity level and spatial avoidance of predator) of nine anurans in response to P. clarkii chemical cues, and compared them with the defences towards a native predator, the larval dragonfly Aeshna sp. To investigate how chemical cues from consumed conspecifics shape the responses, we raised tadpoles with either a tadpole-fed or starved crayfish, or dragonfly larva, or in the absence of a predator. Five species significantly altered their behaviour in the presence of crayfish, and this was largely mediated by chemical cues from consumed conspecifics. In the presence of dragonflies, most species exhibited behavioural defences and often these did not require the presence of cues from predation events. Responding to cues from consumed conspecifics seems to be a critical factor in facilitating certain behavioural responses to novel exotic predators. This finding can be useful for predicting antipredator responses to invasive predators and help directing conservation efforts to the species at highest risk.  相似文献   

6.
Factors related to the invasion process, such as high abundance of invaders, residence time, and functional distinctiveness, are well documented, but less attention has been given to the effects of antipredator strategy of invasive species during colonization. In this study, we explored the antipredator strategy of an introduced species by comparing the predator avoidance behaviors of two native anuran species and one introduced("exotic") species in the presence of different predators. The two native anuran species used in the study were Black-spotted Pond Frog Rana nigromaculata and Terrestrial Frog Rana limnocharis. The introduced(invasive) species used was American bullfrog Lithobates catesbeianus. Chinese pond turtle Chinemys reevesii, Red-backed rat snake Elaphe rufodorsata, and Big-headed turtle Platysternon megacephalum were used as predator species. Chinese pond turtles and Red-backed rat snakes are native predators of Black-spotted Pond Frogs and Terrestrial Frogs, while Big-headed turtles are novel("unfamiliar") to the two frogs. All three predator species are novel("unfamiliar") to the American bullfrog. The results show that tadpoles of the two native species displayed behaviors of recognizing the two native predators, but did not display the capability of identifying the novel predator. Results from our study also suggest that American bullfrog tadpoles exhibited strong antipredator behavioral responses by displaying the capability of identifying "unfamiliar" predators without cohabitation history and prior exposure to them. Such antipredator behavioral responses could have resulted in more favorable outcomes for an invading species during the invasive introductory process.  相似文献   

7.
Alien predators can have catastrophic effects on ecosystems and are thought to be much more harmful to biodiversity than their native counterparts. However, trophic cascade theory and the mesopredator release hypothesis predict that the removal of top predators will result in the reorganization of trophic webs and loss of biodiversity. Using field data collected throughout arid Australia, we provide evidence that removal of an alien top-predator, the dingo, has cascading effects through lower trophic levels. Dingo removal was linked to increased activity of herbivores and an invasive mesopredator, the red fox (Vulpes vulpes), and to the loss of grass cover and native species of small mammals. Using species distribution data, we predict that reintroducing or maintaining dingo populations would produce a net benefit for the conservation of threatened native mammals across greater than 2.42 × 106 km2 of Australia. Our study provides evidence that an alien top predator can assume a keystone role and be beneficial for biodiversity conservation, and also that mammalian carnivores more generally can generate strong trophic cascades in terrestrial ecosystems.  相似文献   

8.
Identifying impacts of exotic species on native populations is central to ecology and conservation. Although the effects of exotic predators on native prey have received much attention, the role of exotic prey on native predators is poorly understood. Determining if native predators actively prefer invasive prey over native prey has implications for interpreting invasion impacts, identifying the presence of evolutionary traps, and predator persistence. One of the world’s most invasive species, Pomacea maculata, has recently established in portions of the endangered Everglade snail kite’s (Rostrhamus sociabilis plumbeus) geographic range. Although these exotic snails could provide additional prey resources, they are typically much larger than the native snail, which can lead to lower foraging success and the potential for diminished energetic benefits in comparison to native snails. Nonetheless, snail kites frequently forage on exotic snails. We used choice experiments to evaluate snail kite foraging preference in relation to exotic species and snail size. We found that snail kites do not show a preference for native or exotic snails. Rather, snail kites generally showed a preference for medium-sized snails, the sizes reflective of large native snails. These results suggest that while snail kites frequently forage on exotic snails in the wild, this behavior is likely driven simply by the abundance of exotic snails rather than snail kites preferring exotics. This lack of preference offers insights to hypotheses regarding effects of exotic species, guidance regarding habitat and invasive species management, and illustrates how native-exotic relationships can be misleading in the absence of experimental tests of such interactions.  相似文献   

9.
1. Abundant native predators, parasites and pathogens that switch to consuming a hyper‐successful exotic species may be able to control the invasive population. Native predators may, however, need time to adapt to feed effectively on an exotic resource. In this case, mortality on an exotic population from native predators could increase over time even without a numerical increase in the predator population. 2. We measured mortality of zebra mussels (Dreissena polymorpha) in the Hudson River both in controls open to predation and in exclosures that excluded large predators to estimate mortality of zebra mussels from large predators and other causes. 3. We found that predation by the blue crab (Callinectes sapidus), and perhaps other predators, causes high mortality on zebra mussels in the Hudson River estuary. This predation apparently led to increased mortality and altered population structure in the invader over time. 4. Long‐term data from the Hudson River suggest that components of the invaded ecosystem, like rotifers, are recovering through predator‐caused release from zebra mussel grazing. Increased mortality on hyper‐successful exotic populations over time may be a common phenomenon with both ecological and management implications.  相似文献   

10.
The ecological effects of introduced species on native organisms can sometimes, but not always be significant. The risks associated with invasive alien pests are difficult to quantify. This paper concentrates on the ecological effects of invasive insect predators that feed on pest insects, because the former may potentially affect the biological control of the latter. The literature indicates that invasive predatory insects generally are resistant to changes in environmental conditions, long-lived and voracious with a high reproductive rate, high dispersal ability, able to spread very rapidly across landscapes and exhibit phenotypic plasticity. Their colonization of patches of prey may induce native predators to leave, but the evidence that invaders negatively affect the abundance of the native species is scarce and not persuasive. Insect predators do not substantially affect the abundance of their prey, if the ratio of generation time of the predator to that of the prey is large (the generation time ratio hypothesis), therefore the effect of an invasion by long-lived alien predators on systems consisting of long-lived native predators and short-lived prey on the abundance of the prey is hard to detect.  相似文献   

11.
Non-consumptive effects of predators on each other and on prey populations often exceed the effects of direct predation. These effects can arise from fear responses elevating glucocorticoid (GC) hormone levels (predator stress hypothesis) or from increased vigilance that reduces foraging efficiency and body condition (predator sensitive foraging hypothesis); both responses can lead to immunosuppression and increased parasite loads. Non-consumptive effects of invasive predators have been little studied, even though their direct impacts on local species are usually greater than those of their native counterparts. To address this issue, we explored the non-consumptive effects of the invasive red fox Vulpes vulpes on two native species in eastern Australia: a reptilian predator, the lace monitor Varanus varius and a marsupial, the ringtail possum Pseudocheirus peregrinus. In particular, we tested predictions derived from the above two hypotheses by comparing the basal glucocorticoid levels, foraging behaviour, body condition and haemoparasite loads of both native species in areas with and without fox suppression. Lace monitors showed no GC response or differences in haemoparasite loads but were more likely to trade safety for higher food rewards, and had higher body condition, in areas of fox suppression than in areas where foxes remained abundant. In contrast, ringtails showed no physiological or behavioural differences between fox-suppressed and control areas. Predator sensitive foraging is a non-consumptive cost for lace monitors in the presence of the fox and most likely represents a response to competition. The ringtail’s lack of response to the fox potentially represents complete naiveté or strong and rapid selection to the invasive predator. We suggest evolutionary responses are often overlooked in interactions between native and introduced species, but must be incorporated if we are to understand the suite of forces that shape community assembly and function in the wake of biological invasions.  相似文献   

12.
The invasion of alien species into areas beyond their native ranges is having profound effects on ecosystems around the world. In particular, novel alien predators are causing rapid extinctions or declines in many native prey species, and these impacts are generally attributed to ecological naïveté or the failure to recognise a novel enemy and respond appropriately due to a lack of experience. Despite a large body of research concerning the recognition of alien predation risk by native prey, the literature lacks an extensive review of naïveté theory that specifically asks how naïveté between novel pairings of alien predators and native prey disrupts our classical understanding of predator–prey ecological theory. Here we critically review both classic and current theory relating to predator–prey interactions between both predators and prey with shared evolutionary histories, and those that are ecologically ‘mismatched’ through the outcomes of biological invasions. The review is structured around the multiple levels of naïveté framework of Banks & Dickman (2007), and concepts and examples are discussed as they relate to each stage in the process from failure to recognise a novel predator (Level 1 naïveté), through to appropriate (Level 2) and effective (Level 3) antipredator responses. We discuss the relative contributions of recognition, cue types and the implied risk of cues used by novel alien and familiar native predators, to the probability that prey will recognise a novel predator. We then cover the antipredator response types available to prey and the factors that predict whether these responses will be appropriate or effective against novel alien and familiar native predators. In general, the level of naïveté of native prey can be predicted by the degree of novelty (in terms of appearance, behaviour or habitat use) of the alien predator compared to native predators with which prey are experienced. Appearance in this sense includes cue types, spatial distribution and implied risk of cues, whilst behaviour and habitat use include hunting modes and the habitat domain of the predator. Finally, we discuss whether the antipredator response can occur without recognition per se, for example in the case of morphological defences, and then consider a potential extension of the multiple levels of naïveté framework. The review concludes with recommendations for the design and execution of naïveté experiments incorporating the key concepts and issues covered here. This review aims to critique and combine classic ideas about predator–prey interactions with current naïveté theory, to further develop the multiple levels of naïveté framework, and to suggest the most fruitful avenues for future research.  相似文献   

13.
Biotic resistance from native predators can play an important role in regulating or limiting exotic prey. We investigate how global warming potentially alters the strength and spatial extent of these predator–prey interactions in aquatic insect ecosystems. As a simple model system, we use rock pools in streams of rainforests of Hawaii, which contain the beautiful Hawaiian damselfly Megalagrion calliphya as predator and the invasive southern house mosquito Culex quinquefasciatus as prey. This abundant mosquito is the major vector of avian malaria transmission to native forest birds. We use mathematical modeling to evaluate the potential impacts of damselfly predation and temperature on mosquito population dynamics. We model this predator–prey system along an elevational gradient (749-1952 m elevation) and assess the effect of 1°C and 2°C climate warming scenarios as well as the effects of El Niño and La Niña oscillations, on predator–prey dynamics. Our results indicate that the strength of biotic resistance of native predators on invasive prey may decrease with increasing temperature because demographic rates of predator and prey are differentially affected by temperature. Future warming could therefore increase the abundance of invasive species by releasing them from predation pressure. If the invasive species is a disease vector, these shifts could increase the impact of disease on both humans and wildlife.  相似文献   

14.
The large vulnerability of top predators to human-induced disturbances on ecosystems is a matter of growing concern. Because top predators often exert strong influence on their prey populations their extinction can have far-reaching consequences for the structure and functioning of ecosystems. It has, for example, been observed that the local loss of a predator can trigger a cascade of secondary extinctions. However, the time lags involved in such secondary extinctions remain unexplored. Here we show that the loss of a top predator leads to a significantly earlier onset of secondary extinctions in model communities than does the loss of a species from other trophic levels. Moreover, in most cases time to secondary extinction increases with increasing species richness. If local secondary extinctions occur early they are less likely to be balanced by immigration of species from local communities nearby. The implications of these results for community persistence and conservation priorities are discussed.  相似文献   

15.
Although invasive species are viewed as major threats to ecosystems worldwide, few such species have been studied in enough detail to identify the pathways, magnitudes, and timescales of their impact on native fauna. One of the most intensively studied invasive taxa in this respect is the cane toad (Bufo marinus), which was introduced to Australia in 1935. A review of these studies suggests that a single pathway-lethal toxic ingestion of toads by frog-eating predators-is the major mechanism of impact, but that the magnitude of impact varies dramatically among predator taxa, as well as through space and time. Populations of large predators (e.g., varanid and scincid lizards, elapid snakes, freshwater crocodiles, and dasyurid marsupials) may be imperilled by toad invasion, but impacts vary spatially even within the same predator species. Some of the taxa severely impacted by toad invasion recover within a few decades, via aversion learning and longer-term adaptive changes. No native species have gone extinct as a result of toad invasion, and many native taxa widely imagined to be at risk are not affected, largely as a result of their physiological ability to tolerate toad toxins (e.g., as found in many birds and rodents), as well as the reluctance of many native anuran-eating predators to consume toads, either innately or as a learned response. Indirect effects of cane toads as mediated through trophic webs are likely as important as direct effects, but they are more difficult to study. Overall, some Australian native species (mostly large predators) have declined due to cane toads; others, especially species formerly consumed by those predators, have benefited. For yet others, effects have been minor or have been mediated indirectly rather than through direct interactions with the invasive toads. Factors that increase a predator's vulnerability to toad invasion include habitat overlap with toads, anurophagy, large body size, inability to develop rapid behavioral aversion to toads as prey items, and physiological vulnerability to bufotoxins as a result of a lack of coevolutionary history of exposure to other bufonid taxa.  相似文献   

16.
There are several records of the carnivorous behaviour of land flatworms, considered to be top‐predators in their micro‐habitats, by preying upon various species of invertebrates. However, there is little knowledge of predators on land‐flatworms. The possible impact of invasive land flatworms on prey populations has caused widespread concern, when considering their predatory behaviour, combined with recent human influence on the distribution of certain species. This work is the first record of predation on land flatworms by a carnivorous snail. Various‐sized land flatworms of 10 native species of the subfamily Geoplaninae, as well as the exotic species Bipalium kewense (subfamily Bipaliinae), were offered to Rectartemon depressus (Gastropoda, Streptaxidae), which accepted all. The predator also fed on the snail Bradybaena similaris. The snails were maintained in laboratory for an average period of 12 months based on a mixed diet of flatworms and B. similaris, suggesting that the snail is a polyphagous predator. Because certain land‐flatworm species have been described as invasive species which may have a potential impact on prey populations in native and man‐made ecosystems, it is proposed that carnivorous snails of other native species, as potential predators of flatworms, should be tested for possible use in biological control programmes of these invasive planarians.  相似文献   

17.
The enemy release hypothesis states that invasive species are successful in their new environment because native species are not adapted to utilize the invasive. If true for predators, native predators should have lower feeding rates on the invasive species than a predator from the native range of the invasive species. We tested this hypothesis for zebra mussel (Dreissena polymorpha) by comparing handling time and predation rate on zebra mussels in the laboratory by two North American species (pumpkinseed, Lepomis gibbosus, and rusty crayfish, Orconectes rusticus) and one predator with a long evolutionary history with zebra mussels (round goby, Neogobius melanostomus). Handling time per mussel (7 mm shell length) ranged from 25 to >70 s for the three predator species. Feeding rates on attached zebra mussels were higher for round goby than the two native predators. Medium and large gobies consumed 50–67 zebra mussels attached to stones in 24 h, whereas pumpkinseed and rusty crayfish consumed <11. This supports the hypothesis that the rapid spread of zebra mussels in North America was facilitated by low predation rates from the existing native predators. At these predation rates and realistic goby abundance estimates, round goby could affect zebra mussel abundance in some lakes.  相似文献   

18.
Invasive predators pose a significant risk to bird populations worldwide. Humans have a long history of removing predators from ecosystems; current island restoration actions typically focus on the removal of invasive predators, such as non-native rodents, from seabird breeding islands. While not overly abundant, the results of predator removal studies provide valuable information on the demographic response of birds, and can assist conservation practitioners with prioritizing invasive predator removal projects. We review such studies focusing on observed demographic responses of bird populations to predator removal campaigns and whether ecological factors are useful in predicting those responses. From the 800+ predator removal programs indentified, a small fraction (n = 112) reported demographic responses of bird populations. Change in productivity was the most commonly reported response, which on average increased by 25.3% (2.5 SE) with predator removal. The best supported model for predicting the change in productivity from predator removal incorporated bird body mass, egg mass, predator type, nest type and an interaction term for body mass and nest type (AICc weight = 0.457). The predicted percent increase in productivity resulting from hypothetical predator removal ranged from 16.9 to 63.0% (mean = 45.0, 5.6 SE), and was lowest for large, surface nesting birds such as albatrosses. The predicted increase in productivity resulting from predator removal alone was insufficient to reverse the predicted population decline for 30–67% of bird species considered, suggesting that in many cases, removal of predators must be performed in combination with other conservation actions in order to ensure a stable or increasing population.  相似文献   

19.
Native predators are postulated to have an important role in biotic resistance of communities to invasion and community resilience. Effects of predators can be complex, and mechanisms by which predators affect invasion success and impact are understood for only a few well-studied communities. We tested experimentally whether a native predator limits an invasive species’ success and impact on a native competitor for a community of aquatic insect larvae in water-filled containers. The native mosquito Aedes triseriatus alone had no significant effect on abundance of the invasive mosquito Aedes albopictus. The native predatory midge Corethrella appendiculata, at low or high density, significantly reduced A. albopictus abundance. This effect was not caused by trait-mediated oviposition avoidance of containers with predators, but instead was a density-mediated effect caused by predator-induced mortality. The presence of this predator significantly reduced survivorship of the native species, but high predator density also significantly increased development rate of the native species when the invader was present, consistent with predator-mediated release from interspecific competition with the invader. Thus, a native predator can indirectly benefit its native prey when a superior competitor invades. This shows the importance of native predators as a component of biodiversity for both biotic resistance to invasion and resilience of a community perturbed by successful invasion.  相似文献   

20.
Invasive species cause deep impacts on ecosystems worldwide, contributing to the decline and extinction of indigenous species. Effective defences against native biological threats in indigenous species, whether structural or inducible, often seem inoperative against invasive species. Here, we show that tadpoles of the Iberian green frog detect chemical cues from indigenous predators (dragonfly nymphs) and respond by reducing their activity and developing an efficient defensive morphology against them (increased tail depth and pigmentation). Those defensive responses, however, were not activated against a highly damaging invasive predator (red swamp crayfish). Induced defences increased tadpole survival when faced against either indigenous dragonflies or invasive crayfish, so its inactivation in the presence of the invasive predator seems to be due to failure in cue recognition. Furthermore, we tested for local adaptation to the invasive predator by comparing individuals from ponds either exposed to or free from crayfish. In both cases, tadpoles failed to express inducible defences against crayfish, indicating that ca 30 years of contact with the invasive species (roughly 10-15 frog generations) have been insufficient for the evolution of recognition of invasive predator cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号