首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The population of white-tailed sea eagles (Haliaeetus albicilla) in the Czech Republic declined dramatically during the twentieth century. None were observed in the area for more than 60 years until population recoveries were observed beginning in the 1980s. It is currently estimated that 25–30 breeding pairs of white-tailed sea eagles nest in the Czech Republic. This article analyses surveillance data from three periods between 1973 and 2003 on the occurrence and nesting of white-tailed sea eagles in the Czech Republic. We investigated recolonization of European white-tailed sea eagles in the Czech Republic in terms of migration patterns and population structures. Bird ringing data suggest the Czech population may be recovered from various areas encompassing northern Europe. Using data collected by DNA microsatellite, no population structure was revealed through Bayesian and cluster analyses with an existing Hardy–Weinberg equilibrium, which suggests mixed panmictic populations of white-tailed sea eagles in the Czech Republic and Slovakia. While analysis of genetic diversity showed no difference between recovered populations in the southeastern Czech Republic and those persisting in Slovakia, there was genetic diversity between eagles of the southeastern subpopulation and eagles in other parts of the Czech Republic. Taken together, these observations on the population structure of white-tailed sea eagles in the Czech Republic imply that other European birds contributed to the recovery of the Czech population, likely through breeding mixture with an identifiable centre in the southeastern Czech Republic.  相似文献   

2.
We analysed 123 white‐tailed sea eagles (Haliaeetus albicilla) from (primarily central) Europe with respect to variability and differentiation based on 499 bp of the mitochondrial control region and genotypes at seven unlinked nuclear microsatellites. Variability was high (overall expected heterozygosity, haplotype and nucleotide diversity being 0.70, 0.764 and 0.00698, respectively) and both marker systems showed a subdivision into two main genetic clusters (microsatellites) or haplogroups (mtDNA). In line with earlier analyses focusing on populations from northern and eastern Europe, as well as from Asia, we found a high level of admixture in Europe and no signs of a bottleneck – despite a severe decline of white‐tailed sea eagle populations during the 20th century. Europe is thus a global stronghold for this species not only with respect to the number of breeding pairs but also regarding the proportion of species‐wide genetic diversity. Our dense sampling revealed a possibly clinal variation within central Europe from north‐west to south‐east that was reflected by the distribution of mtDNA haplotypes as well as the two microsatellite‐based clusters. This population differentiation in central Europe probably originated from a geographically structured postglacial colonization and was later enhanced by recent demographic fluctuations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 727–737.  相似文献   

3.
We analysed 120 white‐tailed sea eagles Haliaeetus albicilla from eastern (Poland and Estonia) and southeastern (Serbian Danube population) Europe for genetic variability and structuring at the mitochondrial control region and seven nuclear microsatellite loci. We combined this new dataset with sequence and genotype data from previous analyses covering Greenland and Eurasia (total sample sizes of 420 and 186 individuals for mtDNA and microsatellites, respectively) to address the following questions: 1) does the large eastern population in Europe add significantly to the species‘ overall genetic diversity? 2) Do the new sequence data match the clinal distribution pattern (west to east) of the two major mtDNA lineages? 3) Does the preliminary hypothesis of two nuclear genetic clusters recently found in this species hold for the whole of Europe, and do these clusters show a geographic pattern? Our results confirmed Europe as a stronghold of genetic diversity in white‐tailed sea eagles, and the east of the continent contributed disproportionately to this, the reason being the admixture of eagles with different genetic background. As hypothesised, both mitochondrial lineages were recovered also in eastern Europe, but the globally more eastern lineage was dominant. The presence of two microsatellite clusters was also confirmed, and these groups, too, show a non‐random geographic distribution, with, except for Poland, a high proportion of ‘eastern‐type’ eagles in the populations of east–central and eastern Europe.  相似文献   

4.
A unique community of four syntopic eagle species exists in north‐central Kazakhstan. Questions about behaviour and genetics in these four species would benefit from the development of microsatellite markers. We isolated eight polymorphic microsatellite repeats (AAAG)n from the eastern imperial eagle (Aquila heliaca) genome using a hybridization enrichment technique. These loci revealed moderate diversity in a local population of eastern imperial eagles (observed heterozygosity 0.26–0.78), and were also polymorphic in steppe eagles (A. nipalensis) and white‐tailed sea eagles (Haliaeetus albicilla). These primers may be polymorphic in other species of Aquila and Haliaeetus eagles.  相似文献   

5.
Aim Late Pleistocene glacial changes had a major impact on many boreal and temperate taxa, and this impact can still be detected in the present‐day phylogeographic structure of these taxa. However, only minor effects are expected in species with generalist habitat requirements and high dispersal capability. One such species is the white‐tailed eagle, Haliaeetus albicilla, and we therefore tested for the expected weak population structure at a continental level in this species. This also allowed us to describe phylogeographic patterns, and to deduce Ice Age refugia and patterns of postglacial recolonization of Eurasia. Location Breeding populations from the easternmost Nearctic (Greenland) and across the Palaearctic (Iceland, continental Europe, central and eastern Asia, and Japan). Methods Sequencing of a 500 base‐pair fragment of the mitochondrial DNA control region in 237 samples from throughout the distribution range. Results Our analysis revealed pronounced phylogeographic structure. Overall, low genetic variability was observed across the entire range. Haplotypes clustered in two distinct haplogroups with a predominantly eastern or western distribution, and extensive overlap in Europe. These two major lineages diverged during the late Pleistocene. The eastern haplogroup showed a pattern of rapid population expansion and colonization of Eurasia around the end of the Pleistocene. The western haplogroup had lower diversity and was absent from the populations in eastern Asia. These results suggest survival during the last glaciation in two refugia, probably located in central and western Eurasia, followed by postglacial population expansion and admixture. Relatively high genetic diversity was observed in northern regions that were ice‐covered during the last glacial maximum. This, and phylogenetic relationships between haplotypes encountered in the north, indicates substantial population expansion at high latitudes. Areas of glacial meltwater runoff and proglacial lakes could have provided suitable habitats for such population growth. Main conclusions This study shows that glacial climate fluctuations had a substantial impact on white‐tailed eagles, both in terms of distribution and demography. These results suggest that even species with large dispersal capabilities and relatively broad habitat requirements were strongly affected by the Pleistocene climatic shifts.  相似文献   

6.
There is a public perception that the white‐tailed deer Odocoileus virginianus (Artiodactyla: Cervidae) is the main reservoir supporting the maintenance and spread of the causative agent of Lyme disease, Borrelia burgdorferi. This study examines the pathogen prevalence rate of Borrelia in adult Ixodes scapularis (Ixodida: Ixodidae), the black‐legged tick, collected from white‐tailed deer and compares it with pathogen prevalence rates in adult ticks gathered by dragging vegetation in two contiguous counties west of the Hudson Valley in upstate New York. In both Broome and Chenango Counties, attached and unattached ticks harvested from white‐tailed deer had significantly lower prevalences of B. burgdorferi than those collected from vegetation. No attached ticks on deer (n = 148) in either county, and only 2.4 and 7.3% of unattached ticks (n = 389) in Broome and Chenango Counties, respectively, were harbouring the pathogen. This contrasts with the finding that 40.8% of ticks in Broome County and 46.8% of ticks in Chenango County collected from vegetation harboured the pathogen. These data suggest that a mechanism in white‐tailed deer may aid in clearing the pathogen from attached deer ticks, although white‐tailed deer do contribute to the spatial distribution of deer tick populations and also serve as deadend host breeding sites for ticks.  相似文献   

7.
Quantifying the relative influence of multiple mechanisms driving recent range expansion of non‐native species is essential for predicting future changes and for informing adaptation and management plans to protect native species. White‐tailed deer (Odocoileus virginianus) have been expanding their range into the North American boreal forest over the last half of the 20th century. This has already altered predator–prey dynamics in Alberta, Canada, where the distribution likely reaches the northern extent of its continuous range. Although current white‐tailed deer distribution is explained by both climate and human land use, the influence each factor had on the observed range expansion would depend on the spatial and temporal pattern of these changes. Our objective was to quantify the relative importance of land use and climate change as drivers of white‐tailed deer range expansion and to predict decadal changes in white‐tailed deer distribution in northern Alberta for the first half of the 21st century. An existing species distribution model was used to predict past decadal distributions of white‐tailed deer which were validated using independent data. The effects of climate and land use change were isolated by comparing predictions under theoretical “no‐change between decades” scenarios, for each factor, to predictions under observed climate and land use change. Climate changes led to more than 88%, by area, of the increases in probability of white‐tailed deer presence across all decades. The distribution is predicted to extend 100 km further north across the northeastern Alberta boreal forest as climate continues to change over the first half of the 21st century.  相似文献   

8.
Complex interactions between protected populations may challenge the recovery of whole ecosystems. In California, white sharks (Carcharodon carcharias) mistargeting southern sea otters (Enhydra lutris nereis) are an emergent impact to sea otter recovery, inhibiting the broader ecosystem restoration sea otters might provide. Here, we integrate and analyze tracking and stranding data to compare the phenology of interactions between white sharks and their targeted prey (elephant seals, Mirounga angustirostris) with those of mistargeted prey (sea otters, humans). Pronounced seasonal peaks in shark bites to otters and humans overlap in the late boreal summer, immediately before the annual adult white shark migration to elephant seal rookeries. From 1997 to 2017, the seasonal period when sharks bite otters expanded from 2 to 8 months of the year and occurred primarily in regions where kelp cover declined. Immature and male otters, demographics most associated with range expansion, were disproportionately impacted. While sea otters are understood to play a keystone role in kelp forests, recent ecosystem shifts are revealing unprecedented bottom‐up and top‐down interactions. Such shifts challenge ecosystem management programs that rely on static models of species interactions.  相似文献   

9.
The maintenance of phenotypic variation is a central question in evolutionary biology. A commonly suggested mechanism is that of local adaptation, whereby different phenotypes are adapted to alternative environmental conditions. A recent study in the European barn owl (Tyto alba) has shown that natural selection maintains a strong clinal variation in reddish pheomelanin‐based coloration. Studies in the region where phenotypic variation in this owl is the highest in Europe have further demonstrated that dark‐reddish and pale‐reddish owls exploit open and wooded habitats, predate voles and wood mice, and are long‐tailed and short‐tailed, respectively. However, it remains unclear as to whether these traits evolved as a consequence of allopatric evolution of dark colour in northern Europe and white colour in southern Europe, during which owls could have also evolved different morphologies and foraging behaviour. This scenario implies that covariation between coloration and foraging behaviour could be a specificity of the European continent, which is not found in other worldwide‐distributed populations. To investigate this issue, we studied a barn owl population in the Middle East. The results obtained show that, as in Central Europe, dark‐reddish female owls breed more often in the open landscape than their pale‐reddish female conspecifics, their offspring are fed with more voles than Muridae, and they are longer‐winged and longer‐tailed. These findings indicate that, in the barn owl, the association in females between pheomelanin‐based coloration and foraging behaviour and morphology is not restricted to the European continent but may well evolve in sympatry in many barn owl populations worldwide. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 447–454.  相似文献   

10.
We investigated the distribution of juvenile dispersal distances of a territorial long‐lived species with deferred maturity, the Spanish imperial eagle Aquila adalberti. Here we used a reintroduction program as an experimental approach to test predictions of different hypotheses about the distribution of juvenile dispersal distances: competition and wandering behavior. We determined maximal juvenile dispersal distances of 59 young eagles; 1) 30 wild non‐manipulated individuals, and 2) 29 tranlocated young under an ad libitum feeding program, released with adults breeding in the area. The competitive displacement hypothesis predicts a leptokurtic distribution of distances in wild non‐manipulated young as well as in released young. Under the ‘wandering’ hypothesis, however, a leptokurtic distribution is expected in wild young but a normal distribution would be expected in young released (with adults in the release area), owing to a general improvement in the nutritional status of released young that have been fed ad libitum, as is usual in reintroduction programs. Additionally, a negative relationship between hatching date and dispersal distances is expected in wild young but no relationship in released young under ad libitum feeding. Mean maximum dispersal distances for all the juvenile eagles was 142.8 km. No differences between sexes were found, nor between populations or between wild and reintroduced young. Wild young distances were not normally distributed, being closer to a Poisson distribution. In contrast, released young with adults (under ad libitum feeding) showed a normal distribution. Wild birds showed a significant negative relationship between dispersal distance and hatching date, with young that hatched late in the season dispersing shorter distances. However, released young under ad libitum feeding showed no significant relationship between hatching date and dispersal distance. These results support the ‘wandering’ hypothesis as the main driver of the distribution of dispersal distances.  相似文献   

11.
Spatial and temporal distribution of seabird transiting and foraging at sea is an important consideration for marine conservation planning. Using at‐sea observations of seabirds (n = 317), collected during the breeding season from 2012 to 2016, we built boosted regression tree (BRT) models to identify relationships between numerically dominant seabird species (red‐footed booby, brown noddy, white tern, and wedge‐tailed shearwater), geomorphology, oceanographic variability, and climate oscillation in the Chagos Archipelago. We documented positive relationships between red‐footed booby and wedge‐tailed shearwater abundance with the strength in the Indian Ocean Dipole, as represented by the Dipole Mode Index (6.7% and 23.7% contribution, respectively). The abundance of red‐footed boobies, brown noddies, and white terns declined abruptly with greater distance to island (17.6%, 34.1%, and 41.1% contribution, respectively). We further quantified the effects of proximity to rat‐free and rat‐invaded islands on seabird distribution at sea and identified breaking point distribution thresholds. We detected areas of increased abundance at sea and habitat use‐age under a scenario where rats are eradicated from invaded nearby islands and recolonized by seabirds. Following rat eradication, abundance at sea of red‐footed booby, brown noddy, and white terns increased by 14%, 17%, and 3%, respectively, with no important increase detected for shearwaters. Our results have implication for seabird conservation and island restoration. Climate oscillations may cause shifts in seabird distribution, possibly through changes in regional productivity and prey distribution. Invasive species eradications and subsequent island recolonization can lead to greater access for seabirds to areas at sea, due to increased foraging or transiting through, potentially leading to distribution gains and increased competition. Our approach predicting distribution after successful eradications enables anticipatory threat mitigation in these areas, minimizing competition between colonies and thereby maximizing the risk of success and the conservation impact of eradication programs.  相似文献   

12.
The native European flat oyster Ostrea edulis is listed in the OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic (species and habitat protection) and in the UK Biodiversity Action Plan. Once extremely abundant in the nineteenth century, European stocks of O. edulis have declined during the twentieth century to rare, small, localised populations due to overexploitation, habitat degradation and, most recently, the parasitic disease bonamiosis. Selective breeding programmes for resistance to bonamiosis have been initiated in France and Ireland. High genetic diversity and bonamiosis-resistance would be important features of any sustainable restoration programmes for O. edulis. Oysters were sampled across Europe from four hatchery sources, four pond-cultured sources and four wild, but managed fisheries and were genotyped at five microsatellite loci. Hatchery-produced populations from small numbers of broodstock showed a significant loss of genetic diversity relative to wild populations and pedigree reconstruction revealed that they were each composed of a single large full-sib family and several small full-sib families. This extremely low effective population size highlights the variance in reproductive success among the potential breeders. Pond-cultured oysters were intermediate in genetic diversity and effective population size between hatchery and wild populations. Controlled hatchery production allows the development of bonamiosis-resistant strains, but at the expense of genetic diversity. Large scale pond culture on the other hand can provide a good level of genetic diversity. A mixture of these two approaches is required to ensure a healthy and sustainable restoration programme for O. edulis in Europe.  相似文献   

13.
Forests dominated by oak, beech, hornbeam, and boreal conifers are characterized by resource pulses. Contemporary eastern U.S. oak forests may exhibit dramatic resource pulses in part because of the loss of American chestnut, which comprised 25–50% of the canopy throughout its range. Chestnut loss may have reduced mast resources for wildlife. A newly developed, blight‐resistant hybrid makes reintroduction feasible within several years. We use historical data to model the effects of American chestnut mast on consumer populations, illuminating the potential ecological effects of a successful restoration. We parameterized a stochastic population growth model with mast production data to compare consumer population dynamics both pre‐ and post‐blight. We explored the effect of maximum intrinsic population growth rate, degree of density dependence, and reliance upon mast on consumer response to chestnut loss. We parameterized the models for white‐footed mouse, eastern chipmunk, gray squirrel, and white‐tailed deer. At a northern site 14 years post‐blight, simulated annual mast production decreased 80% and the coefficient of variation (CV) increased 60%. At a southern site 35 years post‐blight, annual mast production decreased by 35% and the CV increased by 76%. Smaller, more variable mast crops translated to reduced abundance and increased variability in simulated consumer populations. White‐footed mice were the most responsive, exhibiting a 48% decrease in population size and 57% increase in interannual variation post‐blight. The reintroduction of blight‐resistant chestnut may fundamentally alter predator–prey interactions, gypsy moth outbreaks, and Lyme disease hot spots through its effect on the character of resource pulses that drive consumer dynamics.  相似文献   

14.
Capsule Golden and White‐tailed Eagles selected different habitats for nesting.

Aim To investigate differences in nesting habitat used by sympatrically breeding eagles in western Scotland, following reintroduction of White‐tailed Eagles from 1975 onwards.

Methods Nest‐site locations from national surveys in 2003–05 were entered into a geographical information system (GIS) in order to measure a set of geographic parameters for each nest site. Binary logistic regression with backwards deletion of non‐significant terms was used to derive minimum adequate models at two spatial scales of the likelihood of an eagle nest belonging to one species or the other. We compared changes in occupancy between 1992 and 2003 of Golden Eagle territories inside and outside a GIS model of potential White‐tailed Eagle habitat and according to proximity to White‐tailed Eagle nests.

Results White‐tailed Eagles nested at lower altitudes than Golden Eagles, in more wooded habitats with more open water close by, tending to nest in trees where these were present. There were 3359 km2 of potential White‐tailed Eagle nesting habitat within 25 km of existing White‐tailed Eagle nests, containing 54 Golden Eagle territory centres, but we found no difference in change of occupancy for Golden Eagle territories close to White‐tailed Eagles compared with those further away.

Conclusion White‐tailed and Golden Eagles appear to partition nesting habitat in the west of Scotland by altitude. This corresponds with behaviour in western Norway and with the situation described in historical accounts of nest‐sites in western Scotland prior to extinction of White‐tailed Eagles. It is also consistent with recent studies showing little overlap in breeding season diet of Golden and White‐tailed Eagles in western Scotland, and likely partitioning of foraging habitat by altitude. We conclude that the likelihood of competitive exclusion is less than previously suggested.  相似文献   

15.
The common ragweed (Ambrosia artemisiifolia L.; Asteraceae) is a North American native that is invading Eurasia. Besides its economic impact on crop yield, it presents a major health problem because of its highly allergenic pollen. The plant was imported inadvertently to Europe in the eighteenth century and has become invasive in several countries. By analyzing French and North American populations, it was previously shown that French populations were best described as a mixture of native sources and that range expansion in France probably involved sequential bottlenecks. Here, our aim was to determine whether Eastern European populations of A. artemisiifolia originated from the previously established French populations or from independent trans-Atlantic colonization events. We used nuclear microsatellite markers to elucidate the relationships among populations from Eastern and Western Europe in relation to populations from a broad survey across the native North American range. We found that A. artemisiifolia from Eastern Europe did not originate from the earlier established French populations but rather represents multiple independent introductions from other sources, or introductions from a not yet identified highly diverse native population. Eastern European populations show comparable amounts of genetic variability as do previously characterized French and North American populations, but analyses of population structure clearly distinguish the two European groups. This suggests separate introductions in Eastern and Western Europe as well as divergent sources for these two invasions, possibly as a result of distinct rules for trade and exchange for Eastern Europe during most of the twentieth century.  相似文献   

16.
Circadian rhythms result from adaptations to biotic and abiotic environmental conditions that cycle through the day, such as light, temperature, or temporal overlap between interacting species. At high latitudes, close to or beyond the polar circles, uninterrupted midsummer daylight may pose a challenge to the circadian rhythms of otherwise nocturnal species, such as eagle owls Bubo bubo. By non‐invasive field methods, we studied eagle owl activity in light of their interactions with their main prey the water vole Arvicola amphibius, and their competitor the white‐tailed eagle Haliaeetus albicilla during continuous midsummer daylight on open, treeless islands in coastal northern Norway. We evaluated circadian rhythms, temporal overlap, exposure, and spatial distribution. The owls maintained a nocturnal activity pattern, possibly because slightly dimmer light around midnight offered favourable hunting conditions. The eagles were active throughout the 24‐h period as opposed to the strictly diurnal rhythm reported elsewhere, thus increasing temporal overlap and the potential for interference competition between the two avian predators. This may indicate an asymmetry, with the owls facing the highest cost of interference competition. The presence of eagles combined with constant daylight in this open landscape may make the owls vulnerable to interspecific aggression, and contrary to the available literature, eagle owls rarely exposed themselves visually during territorial calls, possibly to avoid detection by eagles. We found indications of spatial segregation between owls and eagles reflecting differences in main prey, possibly in combination with habitat‐mediated avoidance. Eagle owl vocal activity peaked in the evening before a nocturnal peak in visual observations, when owls were active hunting, consistent with the hypothesis of a dusk chorus in nocturnal bird species. The owls may have had to trade‐off between calling and foraging during the few hours around midnight when slightly dimmer light reduced the detection risk while also providing better hunting conditions  相似文献   

17.
Predicting how animal populations respond to climate change requires knowledge of how species traits influence the response of individuals to variation in anuual weather. Over a four‐year study with two warm and two cold years, we examined how sympatric rock ptarmigan Lagopus muta and white‐tailed ptarmigan L. leucura in the southern Yukon Territory respond to spring weather in terms of breeding phenology and the allocation of reproductive effort. The onset of breeding was approximately synchronous; for each one‐degree rise in spring temperature, mean breeding dates of rock and white‐tailed ptarmigan advanced by about 2.7 and 4 days respectively. Although onset of breeding was similar, the two species differed in their reproductive effort. As breeding was delayed, average first clutch sizes of rock ptarmigan declined from 9.4 to 5.8 eggs over the breeding period, while those of white‐tailed ptarmigan only declined from an average of 7.8 to 6.8. Rock ptarmigan were also less likely to re‐nest if their first clutch was lost to predators and as a consequence they had shorter breeding seasons. White‐tailed ptarmigan produced about 25% more offspring annually than rock ptarmigan and contributed more young through re‐nesting. While white‐tailed ptarmigan had higher annual reproductive output, adult rock ptarmigan had a 20–25% higher annual survival rate, which may indicate a reproduction–survival trade‐off for the two species. These results show that even within the same location, closely related species can differ in how they allocate effort as environmental conditions fluctuate.  相似文献   

18.
Reintroductions are conducted to re‐establish a self‐sustaining population of a species and contribute to ecosystem restoration. The brown treecreeper (Climacteris picumnus) reintroduction into two nature reserves in the Australian Capital Territory in south‐eastern Australia failed to meet its predetermined criteria for success. This occurred despite prior habitat restoration within the reserves where reintroduction occurred. Low survival of reintroduced brown treecreepers, particularly due to predation by native predators, has previously been highlighted as a key factor in the failure of the programme. We compared bird behaviour and habitat characteristics between the reintroduction reserves and the sites where brown treecreepers were sourced (which support stable brown treecreeper populations). We did not identify an indication of significantly higher predation pressure in the reintroduction reserves in comparison with the source sites. However, our results revealed that reintroduced individuals may be more vulnerable to predation because of an increased flight time to reach a refuge area. This was a result of a significantly lower number of refuge areas in logs and trees and a higher number of shrubs (which may obstruct escape paths and hinder detection of predators) in the reintroduction reserves compared with the source sites. We identified a lower ground foraging habitat quality in the reintroduction reserves because of lower numbers of ant mounds and lower areas of forageable ground. However, brown treecreepers were able to disperse extensively throughout the reserves and settle in areas with generally higher‐quality foraging habitat. Therefore, the negative effect of low ground foraging habitat quality would have been most pronounced immediately after release. This study emphasizes the inherent complexities of species reintroductions and ecosystem restoration. Despite experimental restoration activities within the reintroduction reserves, there were still deficiencies in habitat quality. We emphasize that further habitat restoration is required within these reserves to achieve more complete restoration.  相似文献   

19.
Question: Which restoration measures (reintroduction techniques, reintroduction timing and fertilization) best enable the establishment of fen species on North American cut‐away peatlands? Location: Rivière‐du‐Loup peatland, southern Québec, Canada. Methods: In total, eight treatments which tested a combination of two reintroduction techniques, two reintroduction timings and the use of phosphorus fertilization were tested in a field experiment within a completely randomized block design. Results: Sphagnum transfer, a reintroduction technique commonly used for bog restoration in North America, was effective for establishing Sphagnum and Carex species. The hay transfer method, commonly used for fen restoration in Europe, was much less successful, probably due to questionable viability of reintroduced seeds. The treatments which included light phosphorus fertilization, had a higher Carex cover after three growing seasons. The timing of the reintroductions had no impact on the success of vegetation establishment. However, vegetation reintroduction should be carried out in the spring while the ground is still frozen to minimize other ecological impacts. Conclusions: The success of the diaspore reintroduction technique on small‐scale units indicates that a large‐scale restoration of fens using this technique is feasible.  相似文献   

20.
Ostrea edulis was once prolific throughout Europe and considered as the continent's native oyster. However, O. edulis currently exists in small fragmented assemblages where natural unaided recovery is rarely encountered. This research identified the small semi‐enclosed sea Lough of Strangford on the northeast coast of Northern Ireland as one of the few locations within Europe where the native oyster displayed gregarious natural rejuvenation. On close examination, four influential parameters appeared to assist in concentrated settlement; raised topographical cultch formations, shell coverage, the number of fecund in situ adults, and site protection. If these components were to be combined and managed as part of reintroduction and restoration initiatives, high‐density settlements and self‐sustaining populations may be possible. The research also identified that unregulated harvesting of intertidal O. edulis assemblages has the potential to seriously hinder natural recoveries. Indeed, the findings suggest that a review of policy in regards to intertidal hand gathering is necessary. However, naturally occurring high‐density settlements recorded during this research should be inspirational to all involved in the restoration of the native oyster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号