首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A pseudogene, nad7, which has significant sequence similarity (66.7% amino acid identity) with the bovine nuclear gene for a 49 kDa subunit of the NADH dehydrogenase (NADH:ubiquinone oxidoreductase, EC 1.6.99.3), has been identified on the mitochondrial genome of the liverwort Marchantia polymorpha. The predicted coding region, which includes six termination codons, is actively transcribed into RNA molecules of 16 and 9.6 kb in length, but RNA splicing products were not detected in the liverwort mitochondria. Genomic DNA blot analysis and RNA blot analysis using poly(A)+ RNA suggest that a structurally related nuclear gene encodes the mitochondrial ND7 polypeptide. These results imply that this nad7 is a relic of a gene transfer event from the mitochondrial genome into the nuclear genome during mitochondrial evolution in M. polymorpha.Communicated by R. G. Herrmann  相似文献   

2.
A pseudogene, ψnad7, which has significant sequence similarity (66.7% amino acid identity) with the bovine nuclear gene for a 49 kDa subunit of the NADH dehydrogenase (NADH:ubiquinone oxidoreductase, EC 1.6.99.3), has been identified on the mitochondrial genome of the liverwort Marchantia polymorpha. The predicted coding region, which includes six termination codons, is actively transcribed into RNA molecules of 16 and 9.6 kb in length, but RNA splicing products were not detected in the liverwort mitochondria. Genomic DNA blot analysis and RNA blot analysis using poly(A)+ RNA suggest that a structurally related nuclear gene encodes the mitochondrial ND7 polypeptide. These results imply that this ψnad7 is a relic of a gene transfer event from the mitochondrial genome into the nuclear genome during mitochondrial evolution in M. polymorpha.  相似文献   

3.
The nad7 gene, encoding subunit 7 of NADH dehydrogenase, is mitochondrially encoded in seed plants. In the liverwort, Marchantia polymorpha, only a pseudogene is located in the mitochondrial genome. We have now identified the functional nad7 gene copy in the nuclear genome of Marchantia, coding for a polypeptide of 468 amino acids. The nuclear-encoded nad7 has lost the two group II introns present in the mitochondrial pseudogene copy. Instead, a typical nuclear intron is found to split an exon encoding the presumptive mitochondrial targeting signal peptide and the mature subunit 7 of NADH dehydrogenase. These results suggest that RNA-mediated gene transfer from the mitochondrial into the nuclear genome occurs not only in seed plants but also in bryophytes. Received: 11 March 1997 / Accepted: 20 August 1997  相似文献   

4.
We have characterized a mitochondrial gene in Oenothera, designated orf454, capable of encoding a component of the cytochrome c biogenesis system. This open reading frame is interrupted by an intron of 941 nucleotides showing high similarity to a group II intron residing in the rpl2 gene. RNA editing, which is observed at 18 cytidine positions within the orf454 reading frame, improves the similarity to protein-coding sequences in bacteria and higher plants and removes the last 16 amino acids. orf454 also shows high sequence similarity to two overlapping reading frames (orf169 and orf322) of Marchantia mitochondria. These ORFs belong to an operon-like cluster of genes in the liverwort that is not conserved in Oenothera mitochondria. However, in bacteria these reading frames are organized like the Marchantia gene cluster. It has been shown by genetical analysis in Rhodobacter capsulatus that these genes are essential for cytochrome c biogenesis. Genes of bacterial operons — ccl1 in Rhodobacter and yejR and nrfE in Escherichia coli — show high sequence similarity to the mitochondrial reading frames orf577 and orf454 of Oenothera. orf454, which we describe here, is homologous to the C-terminal region of these bacterial genes, while the previously described orf577 is homologous to the N-terminal region.  相似文献   

5.
6.
The nad7 gene, encoding subunit 7 of NADH dehydrogenase, is mitochondrially encoded in seed plants. In the liverwort, Marchantia polymorpha, only a pseudogene is located in the mitochondrial genome. We have now identified the functional nad7 gene copy in the nuclear genome of Marchantia, coding for a polypeptide of 468 amino acids. The nuclear-encoded nad7 has lost the two group II introns present in the mitochondrial pseudogene copy. Instead, a typical nuclear intron is found to split an exon encoding the presumptive mitochondrial targeting signal peptide and the mature subunit 7 of NADH dehydrogenase. These results suggest that RNA-mediated gene transfer from the mitochondrial into the nuclear genome occurs not only in seed plants but also in bryophytes.  相似文献   

7.
8.
Analysis of the mitochondrial DNA of a liverwort Marchantia polymorpha by electron microscopy and restriction endonuclease mapping indicated that the liverwort mitochondrial genome was a single circular molecule of about 184,400 base-pairs. We have determined the complete sequence of the liverwort mitochondrial DNA and detected 94 possible genes in the sequence of 186,608 base-pairs. These included genes for three species of ribosomal RNA, 29 genes for 27 species of transfer RNA and 30 open reading frames (ORFs) for functionally known proteins (16 ribosomal proteins, 3 subunits of H(+)-ATPase, 3 subunits of cytochrome c oxidase, apocytochrome b protein and 7 subunits of NADH ubiquinone oxidoreductase). Three ORFs showed similarity to ORFs of unknown function in the mitochondrial genomes of other organisms. Furthermore, 29 ORFs were predicted as possible genes by using the index of G + C content in first, second and third letters of codons (42.0 +/- 10.9%, 37.0 +/- 13.2% and 26.4 +/- 9.4%, respectively) obtained from the codon usages of identified liverwort genes. To date, 32 introns belonging to either group I or group II intron have been found in the coding regions of 17 genes including ribosomal RNA genes (rrn18 and rrn26), a transfer RNA gene (trnS) and a pseudogene (psi nad7). RNA editing was apparently lacking in liverwort mitochondria since the nucleotide sequences of the liverwort mitochondrial DNA were well-conserved at the DNA level.  相似文献   

9.
10.
11.
A mitochondrial gene cluster, encoding proteins homologous to NADH dehydrogenase subunits II and III (ND2 and ND3) and seven tRNAs, from Trichoderma reesei QM9414 was cloned and sequenced. These genes are clustered tandemly on the mitochondrial genome of QM9414. Phylogenetic analysis showed that ND2 and ND3 were most closely related to the mitochondrial ND subunits II (71% identity) and III (70% identity) from Podospora anserine. Northern dot blot analysis showed that the nd2 and nd3 genes are actively transcribed in the T. reesei mitochondria.  相似文献   

12.
Clostridium botulinum produce the antigenically distinct 150 kD neurotoxin serotypes (e.g., A, B, C1, and E) and simultaneously proteins, A Hn+, B Hn+, C Hn+, and E Hn, that have high, low, and no hemagglutinating activity. A Hn+ and B Hn+ are serologically cross-reactive. A Hn+, B Hn+, and C Hn+ found as large aggregates (900–220 kD) can be dissociated on SDS-PAGE into multiple subunits, the smallest for A Hn+, B Hn+ is 17 kD and 27 kD for C Hn+. The 116 kD E Hn does not aggregate. We determined the sequences of 10–33 amino terminal residues of the 17, 21.5, 35, and 57 kD subunits of A Hn+ and B Hn+. Each of these subunits have unique sequences, indicating that the larger units studied are not homomers or heteromers of smaller units. The subunits of A Hn+ and B Hn+ of comparable size have striking sequence identity (e.g., 21.5 kD subunits from the two are identical and 57 kD subunits have 80% identity).In vitro proteolysis of 116 kD E Hn with different proteases did not impart hemagglutinating activity to the fragments. The 116 kD E Hn and one of its proteolytic fragments (87 kD) were partially sequenced. Sixty-two base pairs downstream from the termination codon of the cloned 33 kD subunit of C Hn+, there is an initiation codon followed by an open reading frame for at least 34 amino acid residues (Tsuzukiet al., 1990). The derived amino acid sequence of this open reading frame, we found, has 73–84% sequence identity with those of the 17 kD subunits of A Hn+ and B Hn+ and significant identity with the N-terminal of E Hn. These highly conserved sequences show existence of genetic linkage among the Hn+ and Hn proteins.  相似文献   

13.
Summary The first AUG in the Chlamydomonas reinhardtii ADP/ATP translocator (CRANT) mRNA initiates an open reading frame (ORF) which is very similar (51–79% amino acid identity) to other ANT proteins. In contrast to higher plants, no evidence for a long amino-terminal extension was obtained. The 5 non-transcribed region of the single-copy CRANT gene contains sequence motifs present in other C. reinhardtii nuclear genes. Four introns, whose positions are not conserved in other ANT genes, interrupt the protein coding region. A short heat shock specifically reduces CRANT mRNA levels. CRANT mRNA levels were unaffected by a mutation in photosynthesis. In a dark/light regime CRANT mRNA levels are high in the dark phase and low in the early light phase. Data on translation initiation sites, splice junctions and the codon preferences of C. reinhardtii nuclear genes were compiled. With the exception of two rare codons, ACA and GGA, the CRANT gene exhibits the biased codon usage of C. reinhardtii nuclear genes that are highly expressed during normal vegetative growth.  相似文献   

14.
In this study, we analyzed a mitochondrial small (ms) RNA in Dictyostelium discoideum, which is 129 nucleotides long and has a GC content of only 22.5%. In the mitochondrial DNA, a single-copy gene (msr) for the ms RNA was located downstream of the gene for large-subunit rRNA. The location of msr was similar to that of the 5S rRNA gene in prokaryotes and chloroplasts, but clearly different from that in mitochondria of plants, liverwort and the chlorophycean alga Prototheca wikerhamii, in which small-subunit rRNA and 5S rRNA genes are closely linked. The primary sequence of ms RNA showed low homology with mitochondrial 5S rRNA from plants, liverwort and the chlorophycean alga, but the proposed secondary structure of ms RNA was similar to that of cytoplasmic 5S rRNA. In addition, ms RNA showed a highly conserved GAAC sequence in the same loop as in common 5S rRNA. However, ms RNA was detected mainly in the mitochondrial 25 000 × g supernatant fraction which was devoid of ribosomes. It is possible that ms RNA is an evolutionary derivative of mitochondrial 5S rRNA. Received: 17 May 1997 / Accepted: 26 August 1997  相似文献   

15.
16.
17.
We present an overview of the gene content and organization of the mitochondrial genome of Dictyostelium discoideum. The mitochondria genome consists of 55,564 bp with an A + T content of 72.6%. The identified genes include those for two ribosomal RNAs (rnl and rns), 18 tRNAs, ten subunits of the NADH dehydrogenase complex (nad1, 2, 3, 4, 4L, 5, 6, 7, 9 and 11), apocytochrome b (cytb), three subunits of the cytochrome oxidase (cox1/2 and 3), four subunits of the ATP synthase complex (atp1, 6, 8 and 9), 15 ribosomal proteins, and five other ORFs, excluding intronic ORFs. Notable features of D. discoideum mtDNA include the following. (1) All genes are encoded on the same strand of the DNA and a universal genetic code is used. (2) The cox1 gene has no termination codon and is fused to the downstream cox2 gene. The 13 genes for ribosomal proteins and four ORF genes form a cluster 15.4 kb long with several gene overlaps. (3) The number of tRNAs encoded in the genome is not sufficient to support the synthesis of mitochondrial protein. (4) In total, five group I introns reside in rnl and cox1/2, and three of those in cox1/2 contain four free-standing ORFs. We compare the genome to other sequenced mitochondrial genomes, particularly that of Acanthamoeba castellanii. Received: 5 July 1999 / Accepted: 17 January 2000  相似文献   

18.
Mitochondrial gene sequences, in contrast to their plastid counterparts, have been rarely exploited for use in determining algal phylogenetic relationships. Their utilization would prove advantageous particularly for the assessment of evolutionary relationships among protistan lineages that include photo synthetic species and their colorless heterotrophic dependents that contain only a reduced plastid genome as well as ancestral nonphotosynthetic relatives. Recent studies that have examined mitochondrial protein (coxl, cox2, cob, and nad5) rather than ribosomal RNA genes confirm that these algal sequences are sufficiently conserved to be used routinely in algal systematics. In this investigation, we sequenced the mitochondrial nad4L gene, encoding a small (ca. 99-amino acid) polypeptide subunit of the NADH dehydrogenase complex, from two chromophytic algae and an oomycete to determine its suitability for use in determining algal and protistan evolutionary relationships. Our analysis demonstrated that nad4L could clearly resolve these three organisms as a distinct clade, the stramenopiles, to the exclusion of terrestrial plants/chlorophytes and eufungi. However, the position of deeply rooted species within the stramenopiles proved tenuous and would best be examined in conjunction with the analysis of longer mitochondrial protein gene sequences.  相似文献   

19.
Yuan Y  Li Q  Kong L  Yu H 《Molecular biology reports》2012,39(2):1287-1292
Molluscs in general, and bivalves in particular, exhibit an extraordinary degree of mitochondrial gene order variation when compared with other metazoans. The complete mitochondrial genome of Solen grandis (Bivalvia: Solenidae) was determined using long-PCR and genome walking techniques. The entire mitochondrial genome sequence of S. grandis is 16,784 bp in length, and contains 36 genes including 12 protein-coding genes (atp8 is absent), 2 ribosomal RNAs, and 22 tRNAs. All genes are encoded on the same strand. Compared with other species, it bears a novel gene order. Besides these, we find a peculiar non-coding region of 435 bp with a microsatellite-like (TA)12 element, poly-structures and many hairpin structures. In contrast to the available heterodont mitochondrial genomes from GenBank, the complete mtDNA of S. grandis has the shortest cox3 gene, and the longest atp6, nad4, nad5 genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号