首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of undernutrition on ovarian and uterine venous progesterone concentrations and endometrial progesterone content on Days 5 and 10 of the estrous cycle were studied. Forty ewes were synchronized using progestagen pessaries. At pessary withdrawal, the ewes were fed diets to provide either 1.5 or 0.5 times the daily maintenance requirement (Group H, n = 20 and Group L, n = 20, respectively). Ewes fed the low nutrition diet (Group L) had higher mean peripheral progesterone concentrations than those fed the high plane diet (Group H; P < 0.05) but lower endometrial progesterone content on Day 5 (P < 0.05). Neither ovarian nor uterine venous levels were affected by nutrition on either Day 5 or 10. Progesterone concentrations in blood samples collected ipsilateral to ovaries bearing a corpus luteum (CL) were higher than in the contralateral samples (P < 0.001). It is concluded that undernutrition can produce a reduction of endometrial content of progesterone the first week after mating. Since no differences in ovarian venous concentrations were observed, it remains to be shown whether this variation is due to other variables, such as the population of endometrial progesterone receptors or other nonhormonal factors.  相似文献   

2.
Two groups of ewes were fed to provide 1.70 x (high energy group; n = 15) or 0.56 x (low energy group; n = 15) energy requirements for maintenance of liveweight from 14 d before a synchronized mating in November until slaughter at 9 or 15 d after mating. We investigated the effects on interferon-tau (IFN tau) secretion by the conceptuses, prostaglandin F2 alpha (PG) production in vitro by endometrial tissue, and associated rates of embryo mortality, endometrial progesterone content and progesterone production by luteal tissue. No differences between groups in pregnancy rate were detected on Day 9 between the 2 groups. Proportionately (6/6 vs 2/5), there were more pregnant ewes in the high energy group on Day 15, although this difference did not reach significance (P = 0.06). The proportion of corpora lutea represented by embryos was significantly lower in undernourished ewes (P < 0.05). Secretion in vitro of PG was lower in the 2 pregnant ewes of the low energy group on Day 15, and it was accompanied by higher IFN tau secretion by conceptuses recovered from these ewes. However, the limited number of pregnant ewes recorded on Day 15 prevented any statistical comparison. Neither mean endometrial content of progesterone nor ovarian venous progesterone concentrations and production of progesterone by luteal were affected by nutrition. The provisional results of the present experiment indicate that undernutrition may induce a reduction in the rate of secretion of IFN tau and can therefore increase production of PG from the endometrium. This could initiate luteolysis. The lower pregnancy rates observed in underfed ewes could be mediated through this alteration in the signal of maternal recognition of pregnancy. However, these findings remain to be shown in further experiments including a larger number of animals, as they only represent data from 2 undernourished animals.  相似文献   

3.
Stanniocalcin (STC) is a hormone in fish that regulates calcium levels. Mammals have two orthologs of STC with roles in calcium and phosphate metabolism and perhaps cell differentiation. In the kidney and gut, STC regulates calcium and phosphate homeostasis. In the mouse uterus, Stc1 increases in the mesometrial decidua during implantation. These studies determined the effects of pregnancy and related hormones on STC expression in the ovine uterus. In Days 10-16 cyclic and pregnant ewes, STC1 mRNA was not detected in the uterus. Intriguingly, STC1 mRNA appeared on Day 18 of pregnancy, specifically in the endometrial glands, increased from Day 18 to Day 80, and remained abundant to Day 120 of gestation. STC1 mRNA was not detected in the placenta, whereas STC2 mRNA was detected at low abundance in conceptus trophectoderm and endometrial glands during later pregnancy. Immunoreactive STC1 protein was detected predominantly in the endometrial glands after Day 16 of pregnancy and in areolae that transport uterine gland secretions across the placenta. In ovariectomized ewes, long-term progesterone therapy induced STC1 mRNA. Although interferon tau had no effect on endometrial STC1, intrauterine infusions of ovine placental lactogen (PL) increased endometrial gland STC1 mRNA abundance in progestinized ewes. These studies demonstrate that STC1 is induced by progesterone and increased by a placental hormone (PL) in endometrial glands of the ovine uterus during conceptus (embryo/fetus and extraembryonic membranes) implantation and placentation. Western blot analyses revealed the presence of a 25-kDa STC1 protein in the endometrium, uterine luminal fluid, and allantoic fluid. The data suggest that STC1 secreted by the endometrial glands is transported into the fetal circulation and allantoic fluid, where it is hypothesized to regulate growth and differentiation of the fetus and placenta, by placental areolae.  相似文献   

4.
《Theriogenology》2012,77(9):1594-1601
In cattle, the majority of embryo loss occurs very early during pregnancy (approximately Day 16), around or prior to maternal recognition of pregnancy. The actions of P4 in controlling LH pulsatility and ovarian follicular development may impinge negatively on oocyte quality. A considerable proportion of embryo loss may be attributable to inadequate circulating progesterone (P4) concentrations and the subsequent downstream consequences on endometrial gene expression and histotroph secretion into the uterine lumen. Conceptus growth and development require the action of P4 on the uterus to regulate endometrial function, including conceptus–maternal interactions, pregnancy recognition, and uterine receptivity for implantation. This review summarizes recent data highlighting the role of progesterone in determining oocyte quality and embryo development in cattle.  相似文献   

5.
Lonergan P 《Theriogenology》2011,76(9):1594-1601
In cattle, the majority of embryo loss occurs very early during pregnancy (approximately Day 16), around or prior to maternal recognition of pregnancy. The actions of P4 in controlling LH pulsatility and ovarian follicular development may impinge negatively on oocyte quality. A considerable proportion of embryo loss may be attributable to inadequate circulating progesterone (P4) concentrations and the subsequent downstream consequences on endometrial gene expression and histotroph secretion into the uterine lumen. Conceptus growth and development require the action of P4 on the uterus to regulate endometrial function, including conceptus-maternal interactions, pregnancy recognition, and uterine receptivity for implantation. This review summarizes recent data highlighting the role of progesterone in determining oocyte quality and embryo development in cattle.  相似文献   

6.
Gastrin-releasing peptide (GRP) is abundantly expressed by endometrial glands of the ovine uterus and processed into different bioactive peptides, including GRP1-27, GRP18-27, and a C-terminus, that affect cell proliferation and migration. However, little information is available concerning the hormonal regulation of endometrial GRP and expression of GRP receptors in the ovine endometrium and conceptus. These studies determined the effects of pregnancy, progesterone (P4), interferon tau (IFNT), placental lactogen (CSH1), and growth hormone (GH) on expression of GRP in the endometrium and GRP receptors (GRPR, NMBR, BRS3) in the endometrium, conceptus, and placenta. In pregnant ewes, GRP mRNA and protein were first detected predominantly in endometrial glands after Day 10 and were abundant from Days 18 through 120 of gestation. Treatment with IFNT and progesterone but not CSH1 or GH stimulated GRP expression in the endometrial glands. Western blot analyses identified proGRP in uterine luminal fluid and allantoic fluid from Day 80 unilateral pregnant ewes but not in uterine luminal fluid of either cyclic or early pregnant ewes. GRPR mRNA was very low in the Day 18 conceptus and undetectable in the endometrium and placenta; NMBR and BRS3 mRNAs were undetectable in ovine uteroplacental tissues. Collectively, the present studies validate GRP as a novel IFNT-stimulated gene in the glands of the ovine uterus, revealed that IFNT induction of GRP is dependent on P4, and found that exposure of the ovine uterus to P4 for 20 days induces GRP expression in endometrial glands.  相似文献   

7.
Expression of the gene for prostaglandin synthase (PGS) was examined in whole endometrial tissue derived from ewes during the oestrous cycle (Days 4-14), on Day 15 of pregnancy and following ovariectomy and treatment with ovarian steroid hormones. Whilst no significant differences were seen in PGS mRNA concentrations analysed by Northern blot analysis in endometrial tissue during the oestrous cycle or in early pregnancy, treatment of ovariectomized (OVX) ewes with oestradiol-17 beta markedly reduced endometrial PGS mRNA concentration. There was no difference in PGS mRNA concentration in ewes treated with progesterone, either alone or in conjunction with oestrogen, from that in OVX controls. In contrast, differences in immunolocalization of PGS observed in uterine tissue from OVX-steroid-treated ewes were much more marked and reflected similar changes seen previously in the immunocytochemical distribution of endometrial PGS during the oestrous cycle. In OVX ewes and those treated with oestrogen, immunocytochemical staining for PGS was seen in stromal cells, but little immunoreactive PGS was located in the endometrial epithelial cells. However, in ewes treated with progesterone alone or with oestrogen plus progesterone, PGS was found in luminal and glandular epithelial cells and in stromal cells. Intensity of immunostaining for PGS in endothelial cells and myometrium did not differ between the treatments. Thus, whilst oestrogen lowers PGS mRNA in the endometrium, presumably in stroma, it may also increase the stability of the enzyme itself in the stromal cells. Although oestradiol-17 beta has no effect on PGS in endometrial epithelium, progesterone stimulates the production of PGS in endometrial epithelial cells without altering the overall abundance of PGS mRNA in the endometrium as a whole. Conceptus-induced changes in PGF-2 alpha release by ovine endometrium would not appear to be mediated via effects on PGS gene expression or protein synthesis.  相似文献   

8.
In ruminants, both the endometrium and the conceptus (embryo and associated extraembryonic membranes) trophectoderm synthesizes and secretes prostaglandins (PG) during early pregnancy. In mice and humans, PGs regulate endometrial function and conceptus implantation. In Study One, bred ewes received intrauterine infusions of vehicle as a control (CX) or meloxicam (MEL), a PG synthase (PTGS) inhibitor from Days 8-14 postmating, and the uterine lumen was flushed on Day 14 to recover conceptuses and assess their morphology. Elongating and filamentous conceptuses (12 cm to >14 cm in length) were recovered from all CX-treated ewes. In contrast, MEL-treated ewes contained mostly ovoid or tubular conceptuses. PTGS activity in the uterine endometrium and amounts of PGs were substantially lower in uterine flushings from MEL-treated ewes. Receptors for PGE2 and PGF2 alpha were present in both the conceptus and the endometrium, particularly the epithelia. In Study Two, cyclic ewes received intrauterine infusions of CX, MEL, recombinant ovine interferon tau (IFNT), or IFNT and MEL from Days 10-14 postestrus. Infusion of MEL decreased PGs in the uterine lumen and expression of a number of progesterone-induced endometrial genes, particularly IGFBP1 and HSD11B1. IFNT increased endometrial PTGS activity and the amount of PGs in the uterine lumen. Interestingly, IFNT stimulation of many genes (FGF2, ISG15, RSAD2, CST3, CTSL, GRP, LGALS15, IGFBP1, SLC2A1, SLC5A1, SLC7A2) was reduced by co-infusion with MEL. Thus, PGs are important regulators of conceptus elongation and mediators of endometrial responses to progesterone and IFNT in the ovine uterus.  相似文献   

9.
10.
The paper presents a new theory on the physiological mechanism of initiation of luteolysis, function of endometrial cells and protection of corpus luteum. This theory is based on previous studies published by the authors and their coworkers on the retrograde transfer of PGF2alpha in the uterine broad ligament vasculature during the estrous cycle, early pregnancy and pseudopregnancy. The studies were focused on cyclic changes in uterine blood supply and the apoptosis of endometrial cells. Moreover, the results of many other authors are cited. The statements of the theory are as follows: 1. The initiation of luteolysis is a consequence of regressive changes in the endometrium which are due to the reduction of the uterine blood supply below the level necessary to provide for the extended needs of active endometrium. 2. During the luteal phase, both a considerable increase in uterine weight and a decrease in blood flow through the uterine artery, resulting from increasing progesterone concentration, reduce the uterine blood supply. In comparison to the volume of blood flowing to the porcine uterus during the estrus period, only 30-40% of the blood volume is determined on day 12 of the estrous cycle. The uterine weight at that time is 40-60% larger than that in the early luteal phase. Thus, due to the considerable constriction of uterine blood vessels, there is a discrepancy between the requirement for oxygen and other factors transported by blood and the possibility of supplying the uterus with these substances. After reaching the threshold of uterine blood supply level, which in pigs takes place around day 12 of the estrous cycle, regressive changes and PGF2alpha release from endometrial cells occurs. 3. Estrogens and progesterone are the major factors affecting blood flow in vessels supplying the uterus. The factors that modulate, complement and support vasodilation and vasoconstriction are: PGE2, LH, oxytocin, cytokines, neurotransmitters and other local blood flow regulators. In some animal species these modulators, especially those of embryonic origin, may be crucial for the status of uterine vasculature. 4. During early pregnancy, the action of embryo signals (estrogens, cytokines), endometrial PGE2 as well as LH results in the relaxation of the uterine artery (pigs: day 12) and, consequently, in an increase in uterine blood supply. This reaction of the maternal recognition of pregnancy effectively prevents regressive changes in well developed endometrial cells to occur. 5. Local uptake and retrograde transfer of PGF2alpha into the uterine lumen during early pregnancy protects corpus luteum from PGF2alpha luteolytic action. 6. During the period of regressive changes resulting from the limited uterine blood supply, endometrial cells restrain PGF2alpha synthesis. They are, however, still capable of releasing prostaglandin when uterine blood supply is improved after the embryo appears in the uterus. This potential capability for PGF2alpha synthesis was demonstrated in in vitro studies when endometrial cells collected during its regressive phase were incubated in medium and stimulated by LH and oxytocin. 7. Prostaglandin F2alpha pulses in venous blood flowing from the uterus do not confirm pulsatile secretion of PGF2alpha. The pulses may result from the pulsatile excretion of PGF2alpha with venous blood according to the rhythmic uterine contractions associated with oxytocin secretion. 8. The results supporting this concept are presented and discussed in due course. The critique of Bazer and Thatcher's theory on exocrine versus endocrine secretion of prostaglandin F2alpha during the estrous cycle is also depicted.  相似文献   

11.
Pituitary adenylate cyclase-activating peptide (PACAP), a novel compound with vasoactive intestinal polypeptide-like activity, was recently shown to be localized in the neuronal endings of the human uterus. The purpose of the present study was to assess the functional presence of PACAP mRNA in the decidual endometrium and its relationship to the expression levels of decidual prolactin-related protein (dPRP) and the progesterone receptor mRNAs during decidualization and pregnancy in Sprague-Dawley rats. PACAP was constitutively and temporally expressed in the decidual endometrium and gravid uterus. The time-dependent correlated expression levels of PACAP, dPRP and the progesterone receptor were induced by the neurogenic reproductive signals, i.e. the vagino-cervical/deciduogenic stimuli of decidualization and by the normal equivalent stimuli of mating/blastocyst implantation of gestation. Correlation among the mRNA expression levels of PACAP, dPRP and the progesterone receptor and the coordinated inhibitory actions of the anti-progesterone (RU-486) suggest that there is also correlated time-dependent steroid regulation of the mRNA levels of PACAP, dPRP and the progesterone receptor in the decidual and pregnant uteri. One possible functional meaning for the time-related localization of endometrial/uterine PACAP could be to facilitate endometrial blood flow and increase the availability of metabolic substrates to the developing deciduoma or embryo. The study demonstrates the potential importance of PACAP expression in the regulation of the maternal feto-placental component and suggests a prominent reproductive role for the neuropeptide in mammalian pregnancy.  相似文献   

12.
In ewes, the uterine gland knockout (UGKO) phenotype is caused by neonatal exposure to norgestomet to arrest uterine gland development and produce an adult which has a uterus characterized by the lack of endometrial glands. Since endometrial glands in the sheep produce the lymphocyte-inhibitory protein, ovine uterine serpin (OvUS), an experiment was conducted with ewes of the UGKO phenotype to evaluate whether the inhibitory actions of progesterone on tissue rejection responses in utero are dependent upon the presence of endometrial glands. Control and UGKO ewes were ovariectomized and subsequently treated with either 100 mg/day progesterone or corn oil vehicle for 30 days. An autograft and allograft of skin were then placed in each uterine lumen and treatments were continued for an additional 30 days before grafts were examined for survival. All autografts survived and had a healthy appearance after histological analysis. Allografts were generally rejected in ewes treated with vehicle but were present for hormone-treated ewes, regardless of uterine phenotype. Analysis of the histoarchitecture and protein synthetic capacity of the uterus revealed that progesterone induced differentiation of endometrial glands and synthesis and secretion of OvUS in UGKO ewes. The UGKO ewes had reduced density of CD45R+ lymphocytes in the endometrial epithelium and there was a tendency for progesterone to reduce this effect in luminal epithelium. Taken together, results confirm the actions of progesterone to inhibit graft rejection response in utero. Responses of UGKO ewes to progesterone indicate that the hormone can induce de novo development and differentiation of endometrial glands, at least when skin grafts are in the uterus.  相似文献   

13.
Some aspects of uterine and placental growth have been examine during pregnancy in the ewe. Changes in vitro rates of protein synthesis, RNA: DNA and protein: DNA ratios and the tissue concentration of DNA in intercaruncular endometrium and caruncles (cotyledons between days 0 (oestrus) and 112 of pregnancy were compared with corresponding changes in the concentrations of high-affinity cytosol receptors for oestradiol and progesterone in whole uterus and caruncles/maternal cotyledons. Rapid growth of the intercaruncular endometrium between days 28 and 112 and of the developing cotyledons between days 28 and 84 occur in the presence of tissue levels of both steroid receptors that are extremely low in relation to the corresponding levels seen in the uterus at oestrus. If uterine responses to steroid hormones are regulated by the amounts of specific receptors present in the tissue, the results support the concept that uterine growth after day 28 of pregnancy results primarily from the physical stimulus of the growing concepts rather than from the actions of endogenous steroid sex hormones.  相似文献   

14.
OBJECTIVES: One of the proposed roles of progesterone is to prevent maternal immunological destruction of the allogeneic conceptus. Here, it was demonstrated that progesterone allows survival of a xenotransplant placed in the uterine lumen. METHODS: Ovariectomized ewes, surgically prepared to have ligatures around each uterine horn, were given daily subcutaneous injections of 50 mg progesterone or vehicle (sesame oil). After 30 days of treatment, mouse hybridoma cells were transplanted to one ligated uterine horn and phosphate-buffered saline was injected into the other horn. The uterus was flushed after an additional 14 days of treatment and hybridoma cells were identified by immunofluorescence. RESULTS: Overall, hybridoma cells were recovered from 4 of 5 progesterone-treated ewes and 1 of 5 vehicle-treated ewes. Immunohistochemical analysis of intercaruncular endometrium using antibodies towards CD8, gammadelta, and CD45R lymphocyte markers revealed that local presence of hybridoma cells caused a significant increase in CD8+ cells in all tissue compartments. While not significant, the numbers of CD8+ cells in the luminal and glandular epithelium were lower for progesterone-treated ewes. Progesterone tended to increase gammadelta T cell numbers in the glandular epithelium. CONCLUSIONS: Results demonstrate that xenograft rejection in the uterus is associated with an increase in CD8+ cells in the endometrium and that progesterone can inhibit uterine tissue graft rejection responses sufficiently to allow survival or delay rejection of xenograft tissue.  相似文献   

15.
The oxytocin-induced uterine prostaglandin (PG) F2 alpha response and the levels of endometrial oxytocin receptors were measured in ovariectomized ewes after they had been given steroid pretreatment (SP) with progesterone and estrogen to induce estrus (day of expected estrus = Day 0) and had subsequently been treated with progesterone over Days 1-12 and/or PGF2 alpha over Days 10-12 postestrus. The uterine PGF2 alpha response was measured after an i.v. injection of 10 IU oxytocin on Days 13 and 14, using the PGF2 alpha metabolite, 13,14-dihydro-15-keto-PGF2 alpha (PGFM), as an indicator for PGF2 alpha release. The levels of oxytocin receptors in the endometrium were measured on Day 14. During the treatment with progesterone, the peripheral progesterone concentrations were elevated and remained above 1.8 ng/ml until the morning of Day 14. The PGFM responses to oxytocin in untreated controls and SP controls were low on both Days 13 and 14 whereas the levels of endometrial oxytocin receptors in the same ewes were high. Treatment with progesterone either alone or in combination with PGF2 alpha significantly (p less than 0.04) increased the PGFM response on Day 14 and reduced the levels of endometrial oxytocin receptors; treatment with PGF2 alpha alone had no effect. It is concluded that progesterone promotes the PGFM response to oxytocin while simultaneously suppressing the levels of endometrial oxytocin receptors. PGF2 alpha treatment had no effect on either the uterine secretory response to oxytocin or the levels of oxytocin receptors in the endometrium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A hormonal servomechanism has been proposed to regulate differentiation and function of the endometrial glandular epithelium (GE) in the ovine uterus during pregnancy. This mechanism involves sequential actions of estrogen, progesterone, ovine interferon tau (IFNtau), placental lactogen (oPL), and placental growth hormone (oGH). The biological actions of oPL in vitro are mediated by homodimerization of the prolactin receptor (oPRLR) and heterodimerization of the oPRLR and oGH receptor. The objectives of the study were to determine the effects of intrauterine oPL, oGH, and their combination on endometrial histoarchitecture and gene expression and to localize and characterize binding sites for oPL in the ovine uterus in vivo using an in situ ligand binding assay. Intrauterine infusion of oPL and/or oGH following IFNtau into ovariectomized ewes treated with progesterone daily differentially affected endometrial gland number and expression of uterine milk proteins and osteopontin. However, neither hormone affected PRLR, insulin-like growth factor (IGF)-I, or IGF-II mRNA levels in the endometrium. A chimeric protein of placental secretory alkaline phosphatase (SEAP) and oPL was used to identify and characterize binding sites for oPL in frozen sections of interplacentomal endometrium from pregnant ewes. Specific binding of SEAP-oPL was detected in the endometrial GE on Days 30, 60, 90, and 120 of pregnancy. In Day 90 endometrium, SEAP-oPL binding to the endometrial GE was displaced completely by oPL and prolactin (oPRL) but only partially by oGH. Binding experiments using the extracellular domain of the oPRLR also showed that iodinated oPL binding sites could be competed for by oPRL and oPL but not by oGH. Collectively, results indicate that oPL binds to receptors in the endometrial glands and that oPRL is more effective than oGH in competing for these binding sites. Thus, effects of oPL on the endometrial glands may be mediated by receptors for oPRL and oGH.  相似文献   

17.
18.
The equine embryo must signal its presence to the uterus for pregnancy to continue to term. Mobility of the conceptus throughout the uterus is crucial for its survival, and this action presumably permits the conceptus to transmit its antiluteolytic signal to the endometrium. Studies were completed to establish whether this unidentified antiluteolytic signal targets prostaglandin G/H synthase 2 (PGHS2), a rate limiting enzyme in converting arachidonic acid to prostaglandins (PGs). In the first study, quantitative RT-PCR was used to determine the relative abundance of PGHS2 mRNA in endometrium derived from estrous cyclic and pregnant mares on day 14 post-ovulation. PGHS2 mRNA abundance was substantially greater in endometrium from estrous cyclic mares. Additional studies were completed to better understand PGHS2 in equine endometrium. An estrogen and progesterone treatment regimen in ovariectomized mares was developed as a test model for detecting endometrial PGHS2 mRNA. Also, exposing endometrial explants to conceptus secretions (conditioned culture medium) decreased PGHS2 mRNA abundance whereas exposing explants to oxytocin increased PGHS2 mRNA abundance. Exposure to conceptus secretions also decreased PGF2α concentrations in explant-conditioned medium whereas oxytocin supplementation increased PGF2α concentrations in medium. These data support the hypothesis that PGHS2 is a target for the antiluteolytic signal produced by equine conceptuses during early pregnancy. Also, the endometrial explant culture system used for these studies can serve as a model for identifying and characterizing the maternal recognition of pregnancy factor in equids.  相似文献   

19.
The hormonal regulation of metabolism in the genital tract and the development of embryos during early pregnancy in the ewe have been examined. Ovariectomized ewes received injections of maintenance progesterone, oestrous oestradiol and priming progesterone according to schedules designed to simulate endogenous ovarian secretion during early pregnancy, around the time of oestrus and during the luteal phase of the oestrous cycle immediately preceding oestrus. The survival and development of embryos was dependent upon the dose of maintenaince progesterone and the duration of treatment at the time of transfer, but changes in progesterone dose did not change endometrial protein or RNA metabolism on particular days. Both priming progesterone and oestrous oestradiol were required for normal embryo development. Priming progesterone and oestrous oestradiol each increased endometrial RNA/DNA ratios during early pregnancy. There were no interactions between priming progesterone and oestrous oestradiol, their effects being simply additive. Neither maintenance nor priming progesterone had any effect on protein and RNA metabolism in the oviduct. It is suggested that in the intact ewe oestrogen secreted at oestrus and progesterone secreted prior to oestrus play important roles in the establishment of a uterine environment suitable for the subsequent normal development of embryos.  相似文献   

20.
Blastocyst implantation and successful establishment of pregnancy require delicate interactions between the embryo and the maternal uterine milieu, which are controlled at the embryo-maternal interface by the coordinated interplay of a variety of growth factors, cytokines, hormones, and cell adhesion molecules expressed by both the decidualized endometrium and the trophoblast cells. Proper implantation of the embryo is solely dependent on the initial endometrial receptivity and the preparation of the blastocyst to glue itself to the uterine wall. Both these events are considered to be mediated by cell adhesion molecules and integrins expressed by the blastocyst as well by as the maternal endometrium. Integrin expression by the blastocyst and the uterus is a dynamic process. However, reports on the expression and the hormonal modulation of integrins and their role in blastocyst activation and uterine receptivity during implantation are meager. The present study investigates the expression and hormonal regulation of alpha4beta1 integrin by steroid hormones in the blastocyst and the receptive uterus using an in vivo, delayed-implantation mouse model system. The dormant and activated blastocysts as well as the uteri were recovered from ovariectomized mice after progesterone-alone and progesterone-plus-estrogen therapy, respectively. Immunolocalization of protein expression of alpha4 and beta1 integrin subunits indicate that steroids modulate the expression of alpha4beta1 integrin receptor in the mouse blastocyst as well as the uterus and that a differential expression is observed with exposure to progesterone and estrogen. Intrauterine blocking of alpha4 integrin by specific antibody resulted in implantation failure in normal as well as in delayed-implantation mice. Based on our data, we propose here, to our knowledge for the first time, that alpha4beta1 integrin, which is responsible for binding to fibronectin and vascular cell adhesion molecule-1, is induced by estradiol and is down-regulated by progesterone in mice during implantation. Furthermore, the results also indicate the direct role of alpha4 integrin in the process of implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号