首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: BACKGROUND: Runs of homozygosity (ROH) are contiguous lengths of homozygous genotypes that are present in an individual due to parents transmitting identical haplotypes to their offspring. The extent and frequency of ROHs may inform on the ancestry of an individual and its population. Here we use high density (n = 777,962) bi-allelic SNPs in a range of cattle breed samples to correlate ROH with the pedigree-based inbreeding coefficients and to validate subsequent analyses using 54,001 SNP genotypes. This study provides a first testing of the inference drawn from ROH through comparison with estimates of inbreeding from calculations based on the detailed pedigree data available for several breeds. RESULTS: All animals genotyped on the HD panel displayed at least one ROH that was between 1--5 Mb in length with certain regions of the genome more likely to be involved in a ROH than others. Strong correlations (r = 0.75, p < 0.0001) existed between the pedigree-based inbreeding coefficient and a statistic based on sum of ROH of length > 0.5 KB and suggests that in the absence of an animal's pedigree data, the extent of a genome under ROH may be used to infer aspects of recent population history even from relatively few samples. CONCLUSIONS: Our findings suggest that ROH are frequent across all breeds but differing patterns of ROH length and burden illustrate variations in breed origins and recent management.  相似文献   

2.
This review presents a broader approach to the implementation and study of runs of homozygosity (ROH) in animal populations, focusing on identifying and characterizing ROH and their practical implications. ROH are continuous homozygous segments that are common in individuals and populations. The ability of these homozygous segments to give insight into a population's genetic events makes them a useful tool that can provide information about the demographic evolution of a population over time. Furthermore, ROH provide useful information about the genetic relatedness among individuals, helping to minimize the inbreeding rate and also helping to expose deleterious variants in the genome. The frequency, size and distribution of ROH in the genome are influenced by factors such as natural and artificial selection, recombination, linkage disequilibrium, population structure, mutation rate and inbreeding level. Calculating the inbreeding coefficient from molecular information from ROH (FROH) is more accurate for estimating autozygosity and for detecting both past and more recent inbreeding effects than are estimates from pedigree data (FPED). The better results of FROH suggest that FROH can be used to infer information about the history and inbreeding levels of a population in the absence of genealogical information. The selection of superior animals has produced large phenotypic changes and has reshaped the ROH patterns in various regions of the genome. Additionally, selection increases homozygosity around the target locus, and deleterious variants are seen to occur more frequently in ROH regions. Studies involving ROH are increasingly common and provide valuable information about how the genome's architecture can disclose a population's genetic background. By revealing the molecular changes in populations over time, genome‐wide information is crucial to understanding antecedent genome architecture and, therefore, to maintaining diversity and fitness in endangered livestock breeds.  相似文献   

3.
Runs of homozygosity (ROHs) arise due the transmission from parents to offspring of segments that are either identical by decent (IBD) or identical by state (IBS). The former is due to consanguineous matings whereas the latter is due to demographic processes. ROHs reduce individual nucleotide diversity (θ) as a function of homozygosity, and thus ROH distributions and θ are expected to vary among species because inbreeding levels, recombination rates, and demographic histories vary widely. To help interpret genetic diversity within and among species, we utilized genome sequence data from 78 mammalian species to compare θ and ROH burden (i.e., number and length of ROHs in the genome) among groups of mammals to assess genomic signatures of inbreeding. We compared θ and ROHs: (i) among threatened and non-threatened mammals to determine the significance of contemporary conservation status; (ii) among carnivorous and non-carnivorous mammals to determine the relevance of trophic effects; (iii) relative to body size because mutation rates generally vary with body mass; and (iv) across mammals from different latitudes to test for gradients in genomic diversity (e.g., due to effects of historic climatic regimes). Our results illustrate the considerable variance in genomic diversity across mammals, and that trophic level, body mass, and latitude have significant effects on θ and ROH burden. However, conservation status was not a reliable indicator of genomic diversity. We argue that genetic or genomic diversity should be an explicit component of conservation status, as such diversity is critical to the long-term sustainability of populations, and anticipate that ROHs will become more commonly used to estimate inbreeding in wild animals.  相似文献   

4.
Runs of homozygosity (ROH) are extended tracts of adjacent homozygous single nucleotide polymorphisms (SNPs) that are more common in unrelated individuals than previously thought. It has been proposed that estimating ROH on a genome-wide level, by making use of the genome-wide single nucleotide polymorphism (SNP) data, will enable to indentify recessive variants underlying complex traits. Here, we examined ROH larger than 1.5 Mb individually and in combination for association with survival in 5974 participants of the Rotterdam Study. In addition, we assessed the role of overall homozygosity, expressed as a percentage of the autosomal genome that is in ROH longer than 1.5 Mb, on survival during a mean follow-up period of 12 years. None of these measures of homozygosity was associated with survival to old age.  相似文献   

5.
Autozygosity occurs when two chromosomal segments that are identical from a common ancestor are inherited from each parent. This occurs at high rates in the offspring of mates who are closely related (inbreeding), but also occurs at lower levels among the offspring of distantly related mates. Here, we use runs of homozygosity in genome-wide SNP data to estimate the proportion of the autosome that exists in autozygous tracts in 9,388 cases with schizophrenia and 12,456 controls. We estimate that the odds of schizophrenia increase by ~17% for every 1% increase in genome-wide autozygosity. This association is not due to one or a few regions, but results from many autozygous segments spread throughout the genome, and is consistent with a role for multiple recessive or partially recessive alleles in the etiology of schizophrenia. Such a bias towards recessivity suggests that alleles that increase the risk of schizophrenia have been selected against over evolutionary time.  相似文献   

6.
7.

Background

Recent developments in sequencing technology have facilitated widespread investigations of genomic variants, including continuous stretches of homozygous genomic regions. For cattle, a large proportion of these runs of homozygosity (ROH) are likely the result of inbreeding due to the accumulation of elite alleles from long-term selective breeding programs. In the present study, ROH were characterized in four cattle breeds with whole genome sequence data and the distribution of predicted functional variants was detected in ROH regions and across different ROH length classes.

Results

On average, 19.5 % of the genome was located in ROH across four cattle breeds. There were an average of 715.5 ROH per genome with an average size of ~750 kbp, ranging from 10 (minimum size considered) to 49,290 kbp. There was a significant correlation between shared short ROH regions and regions putatively under selection (p < 0.001). By investigating the relationship between ROH and the predicted deleterious and non-deleterious variants, we gained insight into the distribution of functional variation in inbred (ROH) regions. Predicted deleterious variants were more enriched in ROH regions than predicted non-deleterious variants, which is consistent with observations in the human genome. We also found that increased enrichment of deleterious variants was significantly higher in short (<100 kbp) and medium (0.1 to 3 Mbp) ROH regions compared with long (>3 Mbp) ROH regions (P < 0.001), which is different than what has been observed in the human genome.

Conclusions

This study illustrates the distribution of ROH and functional variants within ROH in cattle populations. These patterns are different from those in the human genome but consistent with the natural history of cattle populations, which is confirmed by the significant correlation between shared short ROH regions and regions putatively under selection. These findings contribute to understanding the effects of inbreeding and probably selection in shaping the distribution of functional variants in the cattle genome.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1715-x) contains supplementary material, which is available to authorized users.  相似文献   

8.
The availability of dense single nucleotide polymorphism (SNP) assays allows for the determination of autozygous segments based on runs of consecutive homozygous genotypes (ROH). The aim of the present study was to investigate the occurrence and distribution of ROH in 21 Italian sheep breeds using medium‐density SNP genotypes in order to characterize autozygosity and identify genomic regions that frequently appeared in ROH within individuals, namely ROH islands. After filtering, the final number of animals and SNPs retained for analyses were 502 and 46 277 respectively. A total of 12 302 ROH were identified. The mean number of ROH per breed ranged from 10.58 (Comisana) to 44.54 (Valle del Belice). The average length of ROH across breeds was 4.55 Mb and ranged from 3.85 Mb (Biellese) to 5.51 Mb (Leccese). Valle del Belice showed the highest value of inbreeding on the basis of ROH (FROH = 0.099), whereas Comisana showed the lowest (FROH = 0.016), and high standard deviation values revealed high variability in autozygosity levels within each breed. Differences also existed in the length of ROH. Analysis of the distribution of ROH according to their size showed that, for all breeds, the majority of the detected ROH were <10 Mb in length, with a few long ROH >25 Mb. The levels of ROH that we estimated here reflect the inbreeding history of the investigated sheep breeds. These results also highlight that ancient and recent inbreeding have had an impact on the genome of the Italian sheep breeds and suggest that several animals have experienced recent autozygosity events. Comisana and Bergamasca appeared as the less consanguineous breeds, whereas Barbaresca, Leccese and Valle del Belice showed ROH patterns typically produced by recent inbreeding. Moreover, within the genomic regions most commonly associated with ROH, several candidate genes were detected.  相似文献   

9.
Genome-wide patterns of homozygosity runs and their variation across individuals provide a valuable and often untapped resource for studying human genetic diversity and evolutionary history. Using genotype data at 577,489 autosomal SNPs, we employed a likelihood-based approach to identify runs of homozygosity (ROH) in 1,839 individuals representing 64 worldwide populations, classifying them by length into three classes—short, intermediate, and long—with a model-based clustering algorithm. For each class, the number and total length of ROH per individual show considerable variation across individuals and populations. The total lengths of short and intermediate ROH per individual increase with the distance of a population from East Africa, in agreement with similar patterns previously observed for locus-wise homozygosity and linkage disequilibrium. By contrast, total lengths of long ROH show large interindividual variations that probably reflect recent inbreeding patterns, with higher values occurring more often in populations with known high frequencies of consanguineous unions. Across the genome, distributions of ROH are not uniform, and they have distinctive continental patterns. ROH frequencies across the genome are correlated with local genomic variables such as recombination rate, as well as with signals of recent positive selection. In addition, long ROH are more frequent in genomic regions harboring genes associated with autosomal-dominant diseases than in regions not implicated in Mendelian diseases. These results provide insight into the way in which homozygosity patterns are produced, and they generate baseline homozygosity patterns that can be used to aid homozygosity mapping of genes associated with recessive diseases.  相似文献   

10.
11.
12.
13.
A dataset consisting of 787 animals with high‐density SNP chip genotypes (346 774 SNPs) and 939 animals with medium‐density SNP chip genotypes (33 828 SNPs) from eight indigenous Swiss sheep breeds was analyzed to characterize population structure, quantify genomic inbreeding based on runs of homozygosity and identify selection signatures. In concordance with the recent known history of these breeds, the highest genetic diversity was observed in Engadine Red sheep and the lowest in Valais Blacknose sheep. Correlation between FPED and FROH was around 0.50 and thereby lower than that found in similar studies in cattle. Mean FROH estimates from medium‐density data and HD data were highly correlated (0.95). Signatures of selection and candidate gene analysis revealed that the most prominent signatures of selection were found in the proximity of genes associated with body size (NCAPG, LCORL, LAP3, SPP1, PLAG1, ALOX12, TP53), litter size (SPP1), milk production (ABCG2, SPP1), coat color (KIT, ASIP, TBX3) and horn status (RXFP2). For the Valais Blacknose sheep, the private signatures in proximity of genes/QTL influencing body size, coat color and fatty acid composition were confirmed based on runs of homozygosity analysis. These private signatures underline the genetic uniqueness of the Valais Blacknose sheep breed. In conclusion, we identified differences in the genetic make‐up of Swiss sheep breeds, and we present relevant candidate genes responsible for breed differentiation in locally adapted breeds.  相似文献   

14.
《Genomics》2021,113(3):1407-1415
Genome-wide pattern of runs of homozygosity (ROH) across ovine genome can provide a useful resource for studying diversity and demography history in sheep. We analyzed 50 k SNPs chip data of 2536 animals to identify pattern, distribution and level of ROHs in 68 global sheep populations. A total of 60,301 ROHs were detected in all breeds. The majority of the detected ROHs were <16 Mb and the average total number of ROHs per individual was 23.8 ± 13.8. The ROHs greater than 1 Mb covered on average 8.2% of the sheep autosomes, 1% of which was related to the ROHs with 1–4 Mb of length. The mean sum of ROH length in two-thirds of the populations was less than 250 Mb ranging from 21.7 to near 570 Mb. The level of genomic inbreeding was relatively low. The average of the inbreeding coefficients based on ROH (FROH) was 0.09 ± 0.05. It was rising in a stepwise manner with distance from Southwest Asia and maximum values were detected in North European breeds. A total of 465 ROH hotspots were detected in 25 different autosomes which partially surrounding 257 Refseq genes across the genome. Most of the detected genes were related to growth, body weight, meat production and quality, wool production and pigmentation. In conclusion, our analysis showed that the sheep genome, compared with other livestock species such as cattle and pig, displays low levels of homozygosity and appropriate genetic diversity for selection response and genetic merit gain.  相似文献   

15.
Understanding how the mating system varies with population size in plant populations is critical for understanding their genetic and demographic fates. We examined how the mating system, characterized by outcrossing rate, biparental inbreeding rate, and inbreeding coefficient, and genetic diversity varied with population size in natural populations of the biennial Sabatia angularis. We found a significant, positive relationship between outcrossing and population size. Selfing was as high as 40% in one small population but was only 7% in the largest population. Despite this pattern, observed heterozygosity did not vary with population size, and we suggest that selection against inbred individuals maintains observed heterozygosity in small populations. Consistent with this hypothesis, we found a trend of lower inbreeding coefficients in the maternal than progeny generation in all of the populations, and half of the populations exhibited significant excesses of adult heterozygosity. Moreover, genetic diversity was not related to population size and was similar across all populations examined. Our results suggest that the consequences of increased selfing for population fitness in S. angularis, a species that experiences significant inbreeding depression, will depend on the relative magnitude and consistency of inbreeding depression and the demographic cost of selection for outcrossed progeny in small populations.  相似文献   

16.
Monitoring the loss of genetic diversity in wild populations after a bottleneck event is a priority in conservation and management plans. Here, we used diverse molecular markers to search for signatures of demographic bottlenecks in two wolf populations; an isolated population from the Iberian Peninsula and a non-isolated population from European Russia. Autosomal, mtDNA and Y-chromosomal diversity and the effective population size (Ne) were significantly lower in the Iberian population. Neutrality tests using mtDNA sequences, such as R2, Fu and Li’s F*, Tajima’s D and Fu’s Fs, were positively significant in the Iberian population, suggesting a population decline, but were not significant for the Russian population, likely due to its larger effective population size. However, three tests using autosomal data confirmed the occurrence of the genetic bottleneck in both populations. The M-ratio test was the only one providing significant results for both populations. Given the lack of consistency among the different tests, we recommend using multiple approaches to investigate possible past bottlenecks. The small effective population size (about 50) in the Iberian Peninsula compared to the presumed extant population size could indicate that the bottleneck was more powerful than initially suspected or an overestimation of the current population. The risks associated with small effective population sizes suggest that the genetic change in this population should be closely monitored in the future. On the other hand, the relatively small effective population size for Russian wolves (a few hundred individuals) could indicate some fragmentation, contrary to what is commonly assumed.  相似文献   

17.
In the local breeds with small population size, one of the most important problems is the increase of inbreeding coefficient (F). High levels of inbreeding lead to reduced genetic diversity and inbreeding depression. The availability of high-density single nucleotide polymorphism (SNP) arrays has facilitated the quantification of F by genomic markers in farm animals. Runs of homozygosity (ROH) are contiguous lengths of homozygous genotypes and represent an estimate of the degree of autozygosity at genome-wide level. The current study aims to quantify the genomic F derived from ROH (FROH) in three local dairy cattle breeds. FROH values were compared with F estimated from the genomic relationship matrix (FGRM), based on the difference between observed v. expected number of homozygous genotypes (FHOM) and the genomic homozygosity of individual i (FMOL i). The molecular coancestry coefficient (fMOL ij) between individuals i and j was also estimated. Individuals of Cinisara (71), Modicana (72) and Reggiana (168) were genotyped with the 50K v2 Illumina BeadChip. Genotypes from 96 animals of Italian Holstein cattle breed were also included in the analysis. We used a definition of ROH as tracts of homozygous genotypes that were >4 Mb. Among breeds, 3661 ROH were identified. Modicana showed the highest mean number of ROH per individual and the highest value of FROH, whereas Reggiana showed the lowest ones. Differences among breeds existed for the ROH lengths. The individuals of Italian Holstein showed high number of short ROH segments, related to ancient consanguinity. Similar results showed the Reggiana with some extreme animals with segments covering 400 Mb and more of genome. Modicana and Cinisara showed similar results between them with the total length of ROH characterized by the presence of large segments. High correlation was found between FHOM and FROH ranged from 0.83 in Reggiana to 0.95 in Cinisara and Modicana. The correlations among FROH and other estimated F coefficients were generally lower ranged from 0.45 (FMOL iFROH) in Cinisara to 0.17 (FGRMFROH) in Modicana. On the basis of our results, recent inbreeding was observed in local breeds, considering that 16 Mb segments are expected to present inbreeding up to three generations ago. Our results showed the necessity of implementing conservation programs to control the rise of inbreeding and coancestry in the three Italian local dairy cattle breeds.  相似文献   

18.
Genome analysis provides a powerful approach to test for evidence of genetic variation within and between geographical regions and local populations. Copy number variants which comprise insertions, deletions and duplications of genomic sequence provide one such convenient and informative source. Here, we investigate copy number variants from genome wide scans of single nucleotide polymorphisms in three European population isolates, the island of Vis in Croatia, the islands of Orkney in Scotland and the South Tyrol in Italy. We show that whereas the overall copy number variant frequencies are similar between populations, their distribution is highly specific to the population of origin, a finding which is supported by evidence for increased kinship correlation for specific copy number variants within populations.  相似文献   

19.
There is much interest in use of identity-by-descent (IBD) methods to map genes, both in Mendelian and in complex disorders. Homozygosity mapping provides a rapid means of mapping autosomal recessive genes in consanguineous families by identifying chromosomal regions that show homozygous IBD segments in pooled samples. In this report, we point out some potential pitfalls that arose during the course of homozygosity mapping of the enhanced S-cone syndrome gene, resulting from (1) unexpected allelic heterogeneity, so that the region containing the disease locus was missed as a result of pooling; (2) identification of a homozygous IBD region unrelated to the disease locus; and (3) the potential for inflation of LOD scores as a result of underestimation of the extent of inbreeding, which Broman and Weber suggest may be quite common.  相似文献   

20.
While the importance of viral infections is well studied in domestic cats, only limited information is available on their occurence and prevalence in the European wildcat (Felis silvestris silvestris). The aim of this study was to determine the prevalence of antibodies to feline coronavirus (FCoV), calicivirus (FCV), herpesvirus (FHV), parvovirus (FPV), immunodeficiency virus (FIV), leukemia virus (FeLV), and FeLV antigenemia in 51 European wildcat sera. Samples were collected between 1996 and 1997 from wildcat populations in France, Switzerland, and Germany. Antibodies to FCoV were detected in two cats (4%) and FCoV RNA was detected in feces of one of these two cats. Antibodies to FCV, FHV and FPV were found at relatively low frequencies of 16%, 4%, and 2%, respectively. Antibodies to FIV were not detected. Although antigen and antibodies to FeLV were detected in 49%, and 75%, respectively, no evidence of FeLV-associated pathology was found. From the low prevalence of FCoV, FCV, FHV and FPV infections and from the fact that the European wildcats live solitarily, it was concluded that these viral infections do not spread readily within a population. Therefore, it may be assumed that release into the wild of European wildcats bred in captivity would not bring about a high risk of introducing of these viral infections to the free-ranging wildcats. As an exception, wildcats should be tested for absence of FIV infection before release if they were at risk to acquire this infection from domestic cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号