首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The products of the reaction between [Pt(dien)Cl]Cl and salmon sperm DNA have been purified and their structures determined. [Pt(dien)Cl]Cl binds at the N7 position of guanine for levels of fixation below 0.1 platinum per DNA base. Above this level of binding, [Pt(dien)Cl]Cl also reacts at the N7 position of adenine. 1,7-[Pt(dien)]2Ade was observed when more than 0.3 platinum per base were bound to the DNA. Platination at the N7 position of guanosine, unlike alkylation, stabilized the glycosyl linkage and did not lead to fission of the imidazole ring at high pH.  相似文献   

2.
The reaction of trans-diamminedichloroplatinum(II) (trans-DDP), the inactive isomer of the anticancer drug cisplatin, with the single-stranded deoxydodecanucleotide d(CCTCGAGTCTCC) in aqueous solution at 37 degrees C was monitored by reversed-phase HPLC. Consumption of the dodecamer follows pseudo-first-order reaction kinetics with a rate constant of 1.25 (4) x 10(-4) s-1. Two intermediates, shown to be monofunctional adducts in which Pt is coordinated to the guanine N7 positions, were trapped with NH4(HCO3) and identified by enzymatic degradation analysis. These monofunctional adducts and a third, less abundant, one are rapidly removed from the DNA by thiourea under mild conditions. When allowed to react further, the monofunctional intermediates formed a single main product that was characterized by 1H NMR spectroscopy and enzymatic digestion as the bifunctional 1,3-intrastrand cross-link trans-[Pt(NH3)2[d(CCTCGAGTCTCC)-N7-G(5),N7-G(7]]). Binding of the trans-[Pt(NH3)2]2+ moiety to the guanosine N7 positions decreases the pKa at N1 and leads to destacking of the intervening A(6) base. The double-stranded trans-DDP-modified and unmodified DNAs were obtained by annealing the complementary strand to the corresponding single strands and then studied by 31P and 1H NMR and UV spectroscopy. trans-DDP binding does not induce large changes in the O-P-O bond or torsional angles of the phosphodiester linkages in the duplex, nor does it significantly alter the UV melting temperature. trans-DDP binding does, however, cause the imino protons of the platinated duplex to exchange rapidly with solvent by 50 degrees C, a phenomenon that occurs at 65 degrees C for the unmodified duplex. A structural model for the platinated double-stranded oligonucleotide was generated through molecular dynamics calculations. This model reveals that the trans-DDP bifunctional adduct can be accommodated within the double helix with minimal distortion of the O-P-O angles and only local disruption of base pairing and destacking of the platinated bases. The model also predicts hydrogen bond formation involving coordinated ammine ligands that bridge the two strands.  相似文献   

3.
D Payet  F Gaucheron  M Sip    M Leng 《Nucleic acids research》1993,21(25):5846-5851
Single- and double-stranded oligonucleotides containing a single monofunctional cis-[Pt(NH3)2(dG)(N7-N-methyl-2-diazapyrenium)]3+ adduct have been studied at two NaCl concentrations. In 50 mM and 1 M NaCl, the adducts within the single-stranded oligonucleotides are stable. In contrast, they are unstable within the corresponding double-stranded oligonucleotides. In 50 mM NaCl, the bonds between platinum and guanine or N-methyl-2,7-diazapyrenium residues are cleaved and subsequently, intra- or interstrand cross-links are formed as in the reaction between DNA and cis-DDP. In 1 M NaCl, the main reaction is the replacement of N-methyl-2,7-diazapyrenium residues by chloride which generates double-stranded oligonucleotides containing a single monofunctional cis-[Pt(NH3)2(dG)Cl]+ adduct. The rates of closure of these monofunctional adducts to bifunctional cross-links have been studied in 60 mM NaClO4. Within d(TG.CT/AGCA), d(CG.CT/AGCG) and d(AG.CT/AGCT) (the symbol.indicates the location of the adducts in the central sequences of oligonucleotides), the half-lifes (t1/2) of the cis-[Pt(NH3)2(dG)Cl]+ adducts are respectively 12, 6 and 2.8 hr and the cross-linking reactions occur between guanine residues on the opposite strands. Within d(AG.TC/GACT), d(CG.AT/ATCG) and d(TGTG./CACA) or d(TG.TG/CACA) t1/2 are respectively 1.6, 8 and larger than 20 hr and the intrastrand cross-links are formed at the d(AG), d(GA) and d(GTG) sites, respectively. The conclusion is that the rates of conversion of cis-platinum-DNA monofunctional adducts to minor bifunctional cross-links are dependent on base sequence. The potential use of the instability of cis-[Pt(NH3)2(dG)(N7-N-methyl-2-diazapyrenium)]3+ adducts is discussed in the context of the antisense strategy.  相似文献   

4.
The reaction of the antitumor active agent cis-[Pt(NH3)2(4-mepy)Cl]Cl (4-mepy stands for 4-methylpyridine) with d(GpG) has been investigated by 1H magnetic resonance spectroscopy. Initially, two mononuclear complexes cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(1)] 1 and cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(2)] 2 are formed in an unexpected ratio 65:35, as determined by 1H NMR and enzymatic digestion techniques. Both products react further with a second equivalent of cis-[Pt(NH3)2(4-mepy)Cl]Cl forming the dinuclear platinum complex [cis-Pt(NH3)2(4-mepy)]2[mu-d(GpG)- N7(1),N7(2)] 3. With [Pt(dien)Cl]Cl and [Pt(NH3)3Cl]Cl similar complexes are formed. No evidence was found for the formation of chelates cis-Pt(NH3)(4-mepy) [d(GpG)-N7(1),N7(2)], which would be formed upon ammonia release from the mononuclear complexes 1 and 2. Even addition of strong nucleophiles, like sodium diethyldithiocarbamate, thiourea, cysteine, or methionine, before or after reaction, do not induce the formation of a chelate. Under all conditions the N-donor ligands remain coordinated to Pt in 1,2 and 3. In addition, the results of bacterial survival and mutagenesis experiments with E. coli strains show that the in vivo formation of bifunctional adducts in DNA, comparable to those induced by cis-Pt(NH3)2Cl2, by treatment of cells with cis-[Pt(NH3)2(4-mepy)Cl]Cl is unlikely. Also, a mechanism of binding and intercalation is not supported by experimental data. All experiments suggest that the mechanism of action of this new class of antitumor agents must be different from that of cis-Pt(NH3)2Cl2.  相似文献   

5.
A comparative study of the binding of square planar cis- and trans-[Pt(NH3)2Cl2] complexes and the octahedral [Ru(NH3)5(H2O)]3+ complex to tRNAphe from yeast was carried out by X-ray crystallography. Both of the carcinostatic compounds, cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ show similarities in their mode of binding to tRNA. These complexes bind specifically to the N(7) positions of guanines G15 and G18 in the dihydrouridine loop. [Ru(NH3)5(H2O)]3+ has an additional binding site at N(7) of residue G1 after extensive soaking times (58 days). A noncovalent binding site for ruthenium is also observed in the deep groove of the acceptor stem helix with shorter (25 days) soaking time. The major binding site for the inactive trans-[Pt(NH3)Cl2] complex is at the N(1) position of residue A73, with minor trans-Pt binding sites at the N(7) positions of residues Gm34, G18 and G43. The similarities in the binding modes of cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ are expected to be related to their carcinostatic properties.  相似文献   

6.
This work has been focused on testing the influence of two selected Pt(II) complexes cisplatin, Pt(NH3)2Cl2, and [Pt(dach)Cl2] on the activity of porcine pancreatic phospholipase A2 (PLA2). It has been assumed that this enzyme plays a role in carcinogenesis and that it could be a target in the tumour therapy. The results of this study show that both Pt(II) complexes inhibit the activity of the enzyme, though they bind to it in a different manner. While cisplatin interacts with the enzyme in an acompetitive manner, the stable interaction of [Pt(dach)Cl2] with PLA2 could not be detected under our experimental conditions.  相似文献   

7.
《Inorganica chimica acta》1988,147(1):99-102
K2PtCl4 reacts with L-lysine and with D,L-diaminiopropionic acid (Dap) forming the neutral complexes [PtCl2(N,O-Lys)]·H20 (1) and [PtCl2(N,O-Dap)], (2) respectively.Compound 1 is monoclinic, space group P21 with a = 11.262(3), b = 11.041(2), c = 9.690(2) Å, β = 102.07(5)°, V = 1178(1) Å3 and Z = 4. Compound 2 is monoclinic, space group P21/n with a = 8.777(1), b = 10.615(2), c = 7.947(1) Å, β = 94.98(3)°, V = 738(1) Å3 and Z = 4. In both compounds, the zwitterionic ligands form an N,O-five membered chelate with the platinum atom. Structures 1 and 2 were refined to R values of 3.3% and 6.3% respectively.  相似文献   

8.
To study the possibility of DNA platination via platinum-sulfur coordinated intermediates, the reactions of the complexes [Pt(dien)GSMe]2+ (GSMe=S-methylated glutathione) and cis-[Pt(NH3)2(GSMe)2]2+ with the synthetic oligonucleotides d(ATATGCATAT), d(ATTACCGGTAAT), and d(ATCCTATTTTTTTTAGGAT) have been investigated. The reactions were studied using FPLC, NMR, and mass spectrometry. It was found that the sulfur atom of the platinum-thioether adduct is substituted by these oligonucleotides. For the reactions with [Pt(dien)GSMe]2+ at 310 K, half-lives were determined to be t 1/2 =147+/-7 h for d(ATATGCATAT), t 1/2 =84+/-4 h) for d(ATTACCGGTAAT), and t 1/2 = 21+/-1 h for d(ATCCTATTTTTTTTAGGAT. This study clearly shows that it is indeed possible for oligonucleotides to be platinated via Pt-thioether coordinated intermediates. The rates at which such substitutions occur, however, makes it improbable that such a mechanism contributes significantly to the antitumor activity of cisplatin.  相似文献   

9.
The Pt(IV) complex c,c,t-[Pt(NH3)2Cl2(OH)2] is an important intermediate in the synthesis of Pt(IV) anticancer prodrugs and has been investigated as an anticancer agent in its own right. An analysis of the vibrational spectroscopy of this molecule was previously reported (Faggiani et al., Can. J. Chem. 60:529, 1982), in which crystallographic determination of the structure of the complex permitted a site group approach. The space group, however, was incorrectly assigned. In the present study we have redetermined at high resolution crystal structures of c,c,t-[Pt(NH3)2Cl2(OH)2] and c,c,t-[Pt(NH3)2Cl2(OH)2]·H2O2, which makes possible discussion of the effect of hydrogen bonding on the N–H and O–H vibrational bands. The correct crystallographic site symmetry of the platinum complex in the c,c,t-[Pt(NH3)2Cl2(OH)2] structure is used to conduct a new vibrational analysis using both group-theoretical and modern density functional theory methods. This analysis reveals the nature and symmetry of the “missing band” described in the original publication and suggests a possible explanation for its disappearance.  相似文献   

10.
Liu W  Chen X  Xie M  Lou L  Ye Q  Yu Y  Hou S 《Journal of inorganic biochemistry》2008,102(10):1942-1946
A series of novel platinum(II) complexes involving a carrier with HO- peripheral functional group, 2-hydroxy-1,3-propanediamine (HO-pda), cis-[Pt(HO-dpa)X2] (X2 = 2Cl (1), (2), malonate (3), 1,1-cyclobutane dicarboxylate (CBDCA) (4), 3-hydroxy-1,1-cyclobutanedicarboxylate (HO-CBDCA) (5)), have been synthesized and characterized by elemental analysis and spectroscopic data along with X-ray diffraction for three representative complexes 1, 4 and 5. The Pt(II) is in a square planar environment and is coordinated in cis position by a chelating HO-pda and 2Cl for 1 and CBDCA for 4 and 5. Pt-N, Pt-Cl and Pt-O distances and coordinate bond angles of N-Pt-N, Cl-Pt-Cl and O-Pt-O are in the normal range. There are two independent molecules in the asymmetric unit of 5, held together by intermolecular hydrogen bonded chain. All the complexes show significant cytotoxicity on the sensitive cell lines SGC-7901, LNcap and A549, and are more active than carboplatin. 4 is also found to be active against the resistant cell A549/ATCC, which suggests that it has less cross-resistance with cisplatin than carboplatin. Moreover 4 shows much greater inhibition of tumor growth than carboplatin in S180-bearing mice, and is therefore worthy of further development as a potential anti-tumor platinum drug.  相似文献   

11.
The influence of cimetidine on patients under cisplatin treatment for cancer is controversial. It has moderate or no effects on several types of cancer and its effects on the nephrotoxicity induced by cisplatin are uncertain. To examine the binding properties and antiproliferative effects of the known anticancer noble metals, cimetidine (cim) was complexed to platinum(II) and palladium(II). The crystal structure of the Pt-cim compound shows two molecules of cimetidine coordinated to the metal through thioether sulfur and imidazolic nitrogen whereas spectroscopic studies in solution for Pd-cim reveal that the ratio of the metal to cimetidine is 1:1 with identical coordination environments. To determine the antitumor activity of the drugs, the interaction of the metallic complexes and free cimetidine with DNA was assessed. Their cytotoxic activity was compared with that of cisplatin.  相似文献   

12.
Dichloro[2-(dimethylaminomethyl)phenyl- phenyl-C1,N]gold(III), [Au(damp-C1,N)Cl2], reacts with the formylferrocene thiosemicarbazones derived from 4-methyl-, 4-phenyl-, 4-ethyl- and 4,4-dimethyl-3-thiosemicarbazides, HFcTSC, to give complexes of general formula [Au(Hdamp-1C)Cl(FcTSC)]Cl. These complexes were isolated and characterized by elemental analysis, mass spectrometry and IR, 1H NMR and (13)C NMR spectroscopy. In some cases, cyclic voltammetric studies were carried out and these showed that the complexation of gold affects the redox behaviour of the ferrocene unit. The in vitro antitumor activity against the HeLa cell line was also determined for the more soluble complexes. The IC(50) values were found to be higher than that of cisplatin but the maximum antiproliferative activity was similar.  相似文献   

13.
Duplex oligonucleotides containing a single intrastrand [Pt(NH3)2]2+ cross-link or monofunctional adduct and either 15 or 22 bp in length were synthesized and chemically characterized. The platinum-modified and unmodified control DNAs were polymerized in the presence of DNA ligase and the products studied on 8% native polyacrylamide gels. The extent of DNA bending caused by the various platinum-DNA adducts was revealed by their gel mobility shifts relative to unplatinated controls. The bifunctional adducts cis-[Pt(NH3)2[d(GpG)]]+, cis-[Pt(NH3)2[d(ApG)]]+, and cis-[Pt(NH3)2[d(G*pTpG*)]], where the asterisks denote the sites of platinum binding, all bend the double helix, whereas the adduct trans-[Pt(NH3)2[d(G*pTpG*)]] imparts a degree of flexibility to the duplex. When modified by the monofunctional adduct cis-[Pt(NH3)2(N3-cytosine)(dG)]Cl the helix remains rod-like. These results reveal important structural differences in DNAs modified by the antitumor drug cisplatin and its analogs that could be important in the biological processing of the various adducts in vivo.  相似文献   

14.
Two 15N-labelled cis-Pt(II) diamine complexes with dimethylamine (15N-dma) and isopropylamine (15N-ipa) ligands have been prepared and characterised. [1H,15N] HSQC NMR spectroscopy is used to obtain the rate and equilibrium constants for the aquation of cis-[PtCl2(15N-dma)2] at 298 K in 0.1 M NaClO4 and to determine the pKa values of cis-[PtCl(H2O)(15N-dma)2]+ (6.37) and cis-[Pt(H2O)2(15N-dma)2]2+ (pKa1 = 5.17, pKa2 = 6.47). The rate constants for the first and second aquation steps (k1 = (2.12 ± 0.01) × 10−5 s−1, k2 = (8.7 ± 0.7) × 10−6 s−1) and anation steps (k−1 = (6.7 ± 0.8) × 10−3 M−1 s−1, k−2 = 0.043 ± 0.004 M−1 s−1) are very similar to those reported for cisplatin under similar conditions, and a minor difference is that slow formation of the hydroxo-bridged dimer is observed. Aquation studies of cis-[PtCl2(15N-ipa)2] were precluded by the close proximity of the NH proton signal to the 1H2O resonance.  相似文献   

15.
The dichlorobis(2-phenylazopyridine)ruthenium(II) complexes, [Ru(azpy)(2)Cl(2)], are under renewed investigation due to their potential anticancer activity. The three most common isomers alpha-, beta- and gamma-[RuL(2)Cl(2)] with L= o-tolylazopyridine (tazpy) and 4-methyl-2-phenylazopyridine (mazpy) (alpha indicating the coordinating Cl, N(pyridine) and Nazo atoms in mutual cis, trans, cis positions, beta indicating the coordinating Cl, N(pyridine) and Nazo atoms in mutual cis, cis, cis positions, and gamma indicating the coordinating Cl, N(pyridine) and Nazo atoms in mutual trans, cis, cis positions) are synthesized and characterized by NMR spectroscopy. The molecular structures of gamma-[Ru(tazpy)(2)Cl(2)] and alpha-[Ru(mazpy)(2)Cl(2)] are determined by X-ray diffraction analysis. The IC(50) values of the geometrically isomeric [Ru(tazpy)(2)Cl(2)] and [Ru(mazpy)(2)Cl(2)] complexes compared with those of the parent [Ru(azpy)(2)Cl(2)] complexes are determined in a series of human tumour cell lines (MCF-7, EVSA-T, WIDR, IGROV, M19, A498 and H266). These data unambiguously show for all complexes the following trend: the alpha isomer shows a very high cytotoxicity, whereas the beta isomer is a factor 10 less cytotoxic. The gamma isomers of [Ru(tazpy)(2)Cl(2)] and [Ru(mazpy)(2)Cl(2)] display a very high cytotoxicity comparable to that of the gamma isomer of the parent compound [Ru(azpy)(2)Cl(2)] and to that of the alpha isomer. These biological data are of the utmost importance for a better understanding of the structure-activity relationships for the isomeric [RuL(2)Cl(2)] complexes.  相似文献   

16.
Various Pt(II)-glycine coordination compounds were characterized by 1H and 13C NMR spectroscopy, some of them also by electrophoretic and chromatographic behavior. The results were applied to the analysis of the reaction mixtures of cis-[Pt(NH3)2Cl2] and glycine obtained under various conditions. Cis-[Pt(NH3)2Cl2] reacts with glycine to give cis-diammine-(glycine-N,O)-Pt(II) and cis-diammine-bis(glycine-N-)Pt(II). Their ratio depends primarily on the pH of the reaction medium. Conformation of these compounds is discussed based on the observed Pt-C and Pt-H NMR coupling constants.  相似文献   

17.
Nucleophilic substitution reaction of 6-chloro-2-fluoro-9-beta-D-ribofuranosyl-9H-purine derivative, prepared from guanosine, with potassium [15N]phthalimide at 40 degrees C for 9 h in DMF, followed by hydrolysis, afforded [2-(15)N]guanosine derivative efficiently. The corresponding 2'-deoxy derivative was also synthesized through a similar procedure.  相似文献   

18.
《Inorganica chimica acta》2001,312(1-2):67-73
Palladium(II) and platinum(II) complexes, [PdX(NS3 1Bu)]BPh4 (X=Cl, Br, I; NS3 1Bu=tris[2-(tert-butylthio)ethyl]amine) and [PtCl(NS3 1Bu)]BPh4, were prepared, and their structures were determined by X-ray analyses. The geometry around the palladium and platinum atoms is square planar. The NS3 1Bu ligand functions as a tridentate ligand and one sulfur atom is not coordinated to the metal. The 1H NMR spectrum of [PdCl(NS3 1Bu)]BPh4 in acetone-d6 exhibited a dynamic behavior. At 20°C the spectrum showed a singlet signal at 1.60 ppm that can be assigned to tert-butyl protons, whereas at −70°C three singlet signals were observed at 1.36, 1.61, and 1.70 ppm with an intensity ratio of 1: 0.25: 2. The signals at 1.36 and 1.70 ppm are assigned to the tert-butyl protons in the square-planar structure, and these signals are consistent with the X-ray structure. The signal at 1.61 ppm can be assigned to the tert-butyl protons in a trigonal-bipyramidal structure where the three tert-butyl groups are magnetically equivalent. Thus, we concluded that the coordination-site exchange occurred via a trigonal-bipyramidal intermediate. The square-planar and trigonal-bipyramidal species of [PdCl(NS3 1Bu)]BPh4 are in equilibrium in acetone-d6. The equilibrium was shifted toward the square-planar species on decreasing the temperature. The 1H NMR spectra for [PdX(NS3 1Bu)]BPh4 (X=Cl, Br, and I) were similar to one another at the same temperature, suggesting that the site-exchange process is insensitive to the kind of coexisting halogen ligand. The site exchange reaction of [PtCl(NS3 1Bu)]BPh4 seems to occur more slowly than that of the palladium(II) analogue.  相似文献   

19.
G L Foureman  D J Reed 《Biochemistry》1987,26(7):2028-2033
The formation of S-[2-(N7-guanyl)ethyl]glutathione (GEG) from dihaloethanes is postulated to occur through two intermediates: the S-(2-haloethyl)glutathione conjugate and the corresponding episulfonium ion. We report the formation of GEG when deoxyguanosine (dG) was incubated with chemically synthesized S-(2-chloroethyl)glutathione (CEG). The depurination of GEG was shown to be first order with a half-life of 7.4 +/- 0.4 h at 27 degrees C. Evidence is also presented for the formation of S-[2-(N7-guanyl)ethyl]-L-cysteine (GEC) in incubation mixtures containing dG and S-(2-chloroethyl)-L-cysteine (CEC), the corresponding cysteine conjugate of CEG. This finding demonstrates that this (haloethyl)cysteine conjugate does not require activation by enzymatic action of cysteine conjugate beta-lyase but, instead, can directly alkylate DNA. The half-life of the depurination of GEC was 6.5 +/- 0.9 h, which is no different from that of GEG. Of the two conjugates, CEC is a somewhat more active alkylating agent toward dG than CEG as N7-guanylic adduct was detected in reaction mixtures with lower concentrations of CEC than with CEG.  相似文献   

20.
The major radioactive products of the fixation of [13N]N2 by Azolla caroliniana Willd.-Anabaena azollae Stras. were ammonium, glutamine, and glutamate, plus a small amount of alanine. Ammonium accounted for 70 and 32% of the total radioactivity recovered after fixation for 1 and 10 minutes, respectively. The presence of a substantial pool of [13N]N2-derived 13NH4+ after longer incubation periods was attributed to the spatial separation between the site of N2-fixation (Anabaena) and a second, major site of assimilation (Azolla). Initially, glutamine was the most highly radioactive organic product formed from [13N]N2, but after 10 minutes of fixation glutamate had 1.5 times more radiolabel than glutamine. These kinetics of radiolabeling, along with the effects of inhibitors of glutamine synthetase and glutamate synthase on assimilation of exogenous and [13N]N2-derived 13NH4+, indicate that ammonium assimilation occurred by the glutamate synthase cycle and that glutamate dehydrogenase played little or no role in the synthesis of glutamate by Azolla-Anabaena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号