首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesophyll cells isolated enzymatically from Vigna angularisleaves were fed 14Cglucose or 14C-erythrose and the time-courseof 14C incorporation into shikimic and quinic acids was examined.When 14C-glucose was fed to the cells, the highest radioactivityin quinic acid was observed after 10 hr of incubation, whilethat in shikimic acid was after 14 hr. In the experiment with14C-erythrose, the radioactivity in shikimic acid rose strikinglyup to the 3rd hour, but 14C in quinic acid increased graduallyduring the incubation. The incorporation of 14C into shikimicacid was enhanced when unlabeled shikimic or quinic acid wassupplied to the cells simultaneously with either 14C-glucoseor 14G-erythrose, whereas that into quinic acid was not significantlyincreased by these alicyclic acids. The difference in incorporationrate of 14C into quinic acid from that into shikimic acid wasmore conspicuous in the isolated mesophyll cells than in theepicotyls of V. angularis seedlings. 1 Present address: Department of Biology, Faculty of Science,Kumamoto University, Kumamoto 860, Japan. (Received September 22, 1978; )  相似文献   

2.
The time course of 14C incorporation into shikimic (SA) andquinic acids (QA) was examined in Quercus pedunculata seedlingsof different age fed with 14C glucose-6-phosphate (G6P) or 14Cdehydroquinic acid (DHQ). QA was actively synthesized from G6Pand exhibited the highest radioactivity among the organic acids.In contrast, DHQ, a good precursor of shikimate, was poor forquinate synthesis. In both cases, QA and SA presented parallelchanges in specific radioactivities with time. The experimental results suggest that in oak leaves QA is formedby a route that is independent of the shikimate pathway andthat this compound undergoes an important turnover. Moreover,depending on the physiological state of the plants, there aredifferences in the relative biosynthetic rates of the two acids. (Received April 23, 1980; )  相似文献   

3.
When either trans-cinnamic acid-2-14C or quinic acid-G-3H wasadministered to sweet potato root discs, each compound was incorporatedinto chlorogenic acid. Hydrolysis analysis revealed that trans-cinnamicacid-2-14C and quinic acid-G-3H were selectively incorporatedinto the aromatic and non-aromatic moieties of chlorogenic acid,respectively. Quinic acid-G-3H was considered a more efficient precursor thantrans-cinnamic acid-2-14C, based on data of dilution values,incorporation percents and pool sizes in the tissue. No conjugatesof trans-cinnamic acid and quinic acid were detected in discsadministered trans-cinnamic acid-2-14C or quinic acid-G-3H.From these experimental results, a possible biosynthetic pathwayfor chlorogenic acid has been proposed. 1 This paper constitutes Part 98 of the Phytopathological Chemistryof Sweet Potato with Black Rot or Injury. (Received November 2, 1971; )  相似文献   

4.
When Phaseolus mungo seeds were allowed to germinate in 5–20mM quinate solution in the dark, a marked increase in the endogenousshikimic acid level occurred in their tissues. The acid levelrose distincdy on the 2nd day of germination and reached a maximumon the 4th day. The quinate-14C fed to germinating seeds waspredominantly converted to shikimic acid, and little radioactivitywas found in 3-dehydroshikimic acid. When quinate-14C was suppliedsimultaneously with relatively high concentrations of 3-dehydroquinicacid or 3-dehydroshikimic acid, its conversionto shikimic acidwas restrained, but hardly any radioactivity was trapped ineither of the dehydro compounds. 3-Dehydroquinic acid-14C or3-dehydroshikimic acid-14C fed to the seeds was metabolizedpreferentially to shikimic acid. The experimental results arediscussed with respect to the metabolic relationship betweenquinic acid and odier alicyclic acids in the aromatic biosynthesisof P. mungo seedlings. (Received October 16, 1975; )  相似文献   

5.
Young mung bean plants (Phaseolus mungo) were exposed to 14C-shikimateor 14C-quinate in the light. After 8 or 23.5 hr of incubationat 25°C, radioactivities in free and bound amino acids,organic acids, soluble and insoluble carbohydrates, ether-solublefraction and lignin were determined. Shikimic and quinic acidswere separated by the combined use of paper-chromatography andcolumn chromatography. Specific activity of formed quinate orshikimate was only slightly lower than that of fed shikimateor quinate. Specific activities of phenylalanine, tyrosine andbound tryptophan were high as compared with those of non-aromaticamino acids. Discussion is focused upon the interconversionbetween shikimate and quinate, and their roles in the biosynthesisof aromatic amino acids. (Received November 15, 1968; )  相似文献   

6.
The activity of the shikimic acid pathway during shoot initiation in tobacco (Nicotiana tabacum L. Wisconsin 38) callus was examined. Enhancement of the activities of 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthase, shikimate kinase, chorismate mutase, and anthranilate synthase was observed during culture of tobacco callus under shootforming conditions in comparison to tissue cultured under non-organforming conditions. Confirmation of these findings was obtained by examining the incorporation of d-[14C]glucose into quinic and shikimic acids and of [14C]shikimic acid into tyrosine, phenylalanine, and tryptophan.  相似文献   

7.
Changes in growth and yield parameters, and 14CO2 and (U-14C)sucrose incorporation into the primary metabolic pool, and essentialoil have been investigated under Mn-deficiency and subsequentrecovery in Mentha piperita, grown in solution culture. UnderMn-deficiency, CO2 exchange rate, total chlorophyll, total assimilatoryarea, plant dry weight, and essential oil yield were significantlyreduced, whereas chlorophyll a/b ratio, leaf area ratio andleaf stem ratio significantly increased. In leaves of Mn-deficientplants, 14CO2 incorporation into the primary metabolic pool(ethanol-soluble and -insoluble) and essential oil were significantlylower, whereas (U-14C) sucrose incorporation into these componentswas significantly higher as compared to the control. Among theprimary metabolites, the label was maximum in sugars, followedby organic acids and amino acids. A higher label in these metaboliteswas, in general, observed in stems of Mn-deficient plants ascompared to the control. Mn-deficient plants supplied with completenutrient medium for 3 weeks exhibited partial recovery in growthand yield parameters, and essential oil biogenesis. Thus, underMn-deficiency and subsequent recovery, the levels of primaryphotosynthetic metabolites and their partitioning between leafand stem significantly influence essential oil biogenesis. Key words: Mentha piperita, Mn-stress, 14CO2 and [U-14C] sucrose incorporation, oil accumulation, primary photosynthetic metabolites  相似文献   

8.
Shikimate kinase from Phaseolus mungo seedlings was partiallypurified by DEAEcellulose, hydroxyapatite and Sephacryl S-200column chromatographies. The activity was completely inhibitedby EDTA and the requirement for Mg2+ could be partially replacedby Mn2+, Ca2+; Co2+ and Cd2+. Sulfhydryl inhibitor did not inhibitthe enzyme activity. The apparent Km values for shikimic acidand ATP at pH 8.6 were 0.25 mM and 0.38 mM, respectively. Theactivity appeared to be maximal at pH 8.6–9.0. Shikimate-3-phosphateand ADP inhibited the activity slightly. Aromatic amino acids,quinic acid and dehydroquinic acid had no significant effecton the activity. (Received January 11, 1979; )  相似文献   

9.
Leaves of different ages from B. calycinum were exposed to 14CO2in light during day and night. The labelling pattern on thechromatogram differed with leaf age. Young leaves had similarpatterns to those of C3 plants during both day and night. Matureleaves showed high incorporation of 14C into C4 acids, especiallyat night. In contrast, no significant difference with leaf agewas observed in the pattern of dark 14CO2 fixation products.Study of the enzyme activity and the content of titratable acidat each leaf age suggested that high incorporation of 14C inC4 acids during the night was due to the simultaneous absorptionof CO2 by both enzymes RuDPcarboxylase and PEPcarboxylase. (Received November 24, 1977; )  相似文献   

10.
The formation of shikimic acid and lignin from glucose in thecambium tissue was investigated. Glucose-1-14C, shikimic acid-G-14C, sodium acetate-1-14C and sodium acetate-2-14C were administeredto the tissue culture of strob pine. Glucose was well incorporatedinto shikimic acid, but acetic acid was less effective. Shikimicacid was very efficient as a precursor of aromatic nucleus andglucose was also converted efficiently to lignin. The extentof incorporation of acetic acid, however, was considerably low.A possibility was discussed that in the cultured tissue ligninand its precursor were synthesized from glucose via the shikimicacid pathway. (Received May 14, 1960; )  相似文献   

11.
When the epicotyls of etiolated pea seedlings were fed with 40 mM potassium quinate solution in the dark for 24 hr, a marked accumulation of shikimic acid occurred in the tissue. This effect was much more pronounced in epicotyls preliminarily starved in a phosphate solution for 24 hr. On the other hand, supplying shikimate to the epicotyls brought about no significant accumulation of quinic acid. Tracer studies with14C-shikimate have shown that, in the epicotyls, shikimic acid was rapidly metabolized and fairly high radioactivities were observed in the amino acid fraction. However, feeding of14C-shikimate together with unlabeled alicyclic acids resulted in a reduction of shikimate utilization. When3H-quinate was fed to the epicotyls, radioactivities were retained mostly in an acidic fraction, indicating the sluggish conversion of quinic acid. In starved epicotyls, however, nearly half of the absorbed radioactivity was consumed. In tracer experiments the conversion of quinate to shikimate was clearly observed, whereas the reverse reaction was not. From these findings the metabolic role of quinic acid in quinate-less pea seedlings is discussed.  相似文献   

12.
Assimilate distribution in leaves of Lolium temulentum was establishedby root absorption of [14C]sucrose and after exposure to 14CO2.Age determined the amount of carbon assimilated, with more labelbeing incorporated during expansion than at maturity. Duringsenescence 14C assimilation was much lower. Ethanol-solubleextracts from various tissues of root-labelled plants containedmost of the radioactivity chiefly in basic and acidic compounds.The neutral fraction was composed predominantly of sucrose. Sucrose was comparably labelled in leaves from plants fed equalamounts of either [14C]sucrose, glucose, or fructose and onlytraces of labelled monosaccharides appeared in extracts. Radioactive sucrose was translocated rapidly from mature leaveswhereas, in the expanding leaf, carbon incorporation was directedtowards growth and the greater proportion of label present atligule formation was in ethanol-insoluble material. Induced senescence, of a mature leaf fed during expansion, produceda rapid loss from the pool of insoluble 14C. This was accompaniedby a reduction in the contents of chlorophyll and soluble proteinand an accumulation of amino acids. The onset of senescencecaused changes in leaf sugar levels which were correlated withincreased rates of respiration.  相似文献   

13.
The biosynthetic pathway for gallic and ellagic acids in young, mature and autumn leaves ofAcer buergerianum andRhus succedanea was examined by tracer experiments, and also by isotope competition, withd-shikimic acid-14C,l-phenylalanine-U-14C,l-phenyllactic acid-U-14C, gallic acid-G-14C and their unlabeled compounds. In young leaves of both plants, the incorporation rate of labeled shikimic acid into gallic acid was significantly higher than that of labeled phenylalanine, whereas in the mature and autumn leaves the latter was a good precursor rather than the former for the gallic acid biosynthesis. Therefore, two pathways for gallic acid formation, through β-oxidation of phenylpropanoid and through dehydrogenation of shikimic acid, could be operating inAcer andRhus leaves, and the preferential pathway is altered by leaf age. In both plants, the incorporation rate of labeled phenyllactic acid during a 24 hr metabolic period was almost the same as that of labeled phenylalanine. The incorporation ofd-skikimic acid-G-14C,l-phenylalanine-U-14C andl-phenyllactic acid-U-14C into ellagic acid was very similar to the case of the radioactive gallic acid formation. Furthermore, regardless of the presence of unlabeled shikimic acid and/or phenylalanine, incorporation of the radioactivity of labeled gallic acid into ellagic acid occurred at a very high rate, suggesting the reciprocal radical reaction of gallic acid for the ellagic acid formation. The incorporation of labeled compounds into ellagitanins was also examined and their biosynthesis discussed further.  相似文献   

14.
Much of the work on the distribution of 14C-labelled assimilatesin tomato has been done in winter under low light intensities,and consequently the reported distribution patterns of 14C maynot be representative of plants growing in high light. Further,there are several somewhat conflicting reports on patterns ofdistribution of 14C-assimilates in young tomato plants. We soughtto clarify the situation by studying the distribution of 14C-assimilatesin tomato plants of various ages grown in summer when the lightintensity was high. In addition, the role of the stem as a storageorgan for carbon was assessed by (a) identifying the chemicalfractions in the stem internode below a fed leaf and monitoring14 C activity in these fractions over a period of 49 d, and(b) measuring concentrations of unlabelled carbohydrates inthe stem over the life of the plant. The patterns of distribution of 14C-assimilates we found fortomato grown under high light intensity confirmed some of thosedescribed for plants grown under low light, but export of 14Cby fed leaves was generally higher than reported for much ofthe earlier work. Lower leaves of young plants exported over50% of the 14C they fixed, although export fell sharply as theplants aged. Initially, the roots and apical tuft were strongsinks for assimilates, but they had declined in importance bythe time plants reached the nine-leaf stage. On the other hand,the stem became progressively more important as a sink for 14C-assimilates.Older, lower leaves exported more of their 14C-assimilates tothe upper part of the plant than to the roots, whereas youngleaves near the top of the plant exported more of their assimilatesto the roots. The stem internode immediately below a fed leafhad about twice the 14C activity of the internode above theleaf. Mature leaves above and below a fed leaf rarely importedmuch 14C, even when in the correct phyllotactic relationshipto the fed leaf. In the first 3 d after feeding leaf 5 of nine-leaf plants, theorganic and amino acid pools and the neutral fraction of theinternode below the fed leaf had most of the 14C activity, butby 49 d after feeding, the ethanolic-insoluble, starch and lipidfractions had most of the 14C activity. Glucose, fructose andsucrose were the main sugars in the stem. Although concentrationsof these sugars and starch declined in the stem as the plantsmatured, there was little evidence to indicate their use infruit production. Stems of plants defoliated at the 44-leafstage had lower concentrations of sugars and starch at maturity,and produced less fruit than the controls. It was concludedthat tomato is sink rather than source limited with respectto carbon assimilates, and that the storage of carbon in thestem for a long period is possibly a residual perennial traitin tomato.Copyright 1994, 1999 Academic Press Lycopersicon esculentum, tomato, assimilate distribution, 14C, internode storage, sink-source relationships, starch, stem reserves, sugars  相似文献   

15.
Seedlings from Euphorbia canariensis and Euphorbia lambii weregrown in the dark at 25 °C. Protein and triglyceride contentas well as levels of sugars and amino acids in the endospermwere determined during endosperm depletion. In the endospermof Euphorbia canariensis, relatively low levels of amino acids(up to 1 µmol.endosperm–1) were found of which glutamine/glutamateaccounted for 40% at the stage of radicle emergence. High levelsof amino acids (up to 4 µmol.endosperm–1) comparedwith sugars (up to 2 µmol sucrose.endosperm–1) weredetected in the endosperm of Euphorbia lambii. Arginine wasthe main component (28 µmol%) of the amino acids in thistissue. In both species amino acid composition changed graduallyduring endosperm depletion. Cotyledons retained their ability to absorb a variety of watersoluble substrates after removal of the endosperm. 14C from[U-14C]sucrose was effectively incorporated into the triterpenesof the laticifers and to a lesser extent into the sterols ofthe seedling. The highest incorporation values were found inyoung seedlings about 2 d after the emergence of the radicle.Seedlings of this age also showed high incorporation rates of14C from labelled alanine, serine, threonine, valine, leucineand isoleucine into both triterpenols and sterols, but no generalconclusions about metabolic channelling in lipid synthesis couldbe made. Endosperm, Euphorbia canariensis L. Euphorbia lambii Svent., sterols, triterpenols, amino acids, laticifer, biosynthesis  相似文献   

16.
Unsuitable temperatures are frequently encountered by soybean(Glycine max L. Merr.) plants grown in the field. Certain polyolshave been reported to protect plants from high temperature orfrost damage. Controlled environment studies were conductedto investigate the effect of stressful temperature regimes onthe content of pinitol (3-O-methyl-D-chiro-inositol) in soybeanplants. Hydroponically-grown soybean plants were subjected tohigh (35/30 C) or low (15/10 C) day/night temperature stresses,and pinitol content in different plant parts was determinedusing high performance liquid chromatography (HPLC). A syntheticplant growth regulator, PGR-IV, was foliarly applied to theplants to evaluate its effect on pinitol content in differentplant components. Uniformly-labelled 14C-glucose was fed intothe leaves via the transpiration stream, and the effects ofhigh temperature and EXP-S1089, another synthetic plant growthregulator, on the incorporation of 14C-glucose into pinitolwas evaluated using HPLC separation and scintillation spectrometry.High-temperature stress significantly increased plant pinitolcontent and the incorporation of 14C-glucose into pinitol, butdecreased the content of sucrose, glucose and fructose. Underlow-temperature stress, there was hardly any change in pinitolcontent, but a drastic increase in soluble sugars. PGR-IV enhancedpinitol translocation from leaves to stems and roots, whileEXP-S1089 increased pinitol/sucrose ratio. Accumulation of pinitolmay be an adjustment mechanism of the plant to reduce high-temperaturedamage, but not low-temperature injuries. Key words: Pinitol, soybean, temperature, plant growth regulator  相似文献   

17.
The biosynthetic pathway from D-glucose to L-(+)-tartaric acid(TA) in detached leaves of the bean, Phaseolus vulgaris L.,was studied in three cultivars, two of which were known to containTA and one of which lacked TA, with the aid of several putativeradiolabeled intermediates, namely D-[l-14C]glucose, D-[6-14C]glucose,D-[U-14C]glucose, D-[U-14C]gluconate, L-[U-14C]-ascorbic acid,L-[l-l4C]idonate, D-xylo-5-[U-14C]hexulosonate, D-xylo-5-[l-14C]hexulosonate,D-xylo-5-[6-l4C]hexulosonate and L-[U-l4C]threonate. D-[U-14C]Glucoseand D-[U-l4C]gluconate were converted to TA with low isotopicyield but this yield was further reduced when leaf tissues weresupplied with unlabeled D-gluconate or D-xylo-5-hexulosonate.D-xylo-5-[U-14C]Hexulosonate and D-xylo-5-[l-14C]hexulosonatewere good precursors of TA. D-xylo-5-[6-14C]Hexulosonate didnot furnish 14C to TA. Addition of a metabolic product of D-xylo-5-hexulosonate(which was labeled by D-xylo-5-[l-14C]hexulosonate but not byD-xylo-5-[6-14C]hexulosonate) to leaves labeled with D-xylo-5-[l-14C]hexulosonatedoubled the incorporation of 14C into TA. L-[U-14C]Ascorbicacid, L-[l-14C]idonate and L-[U-14C]threonate failed to producelabeled TA. A metabolic scheme to accommodate these observationsis presented. (Received October 21, 1988; Accepted March 29, 1989)  相似文献   

18.
The turnover of shikimate pathway intermediates and end productswas examined in tobacco (Nicotiana tabacum L. Wisconsin 38)callus cultured under shoot-forming and non-shoot-forming conditions.In shoot-forming tissue there was a higher rate of net synthesisof quinic and shikimic acids than in proliferating callus. Post-incubation,there was a decrease in labeled quinate and an increase in shikimate.The changes in activity of quinate:NAD$ oxidoreductase werein agreement with the above. The aromatic amino acids, tyrosine,phenylalanine and tryptophan, showed little turnover in theproliferating tissues. On the other hand, higher rates of netsynthesis and degradation, mainly of tyrosine, were observedin shoot-forming tissues. These findings are discussed in relationto the shoot-initiation process. (Received October 14, 1983; Accepted June 4, 1984)  相似文献   

19.
No exact estimation of the amount of radioactive free aminoacids in the cells of the tissue with large size of apparentfree space was possible, since the exact size of the apparentfree space cannot be measured. Furthermore, estimation of thesize of the protein precursor pool, using the method of Hollemanand Key, was not possible in hypocotyl sections of mung bean(Phaseolus mungo L. cv. Black), because of the great differenceover the length of a section in the rate of the incorporationof leucine-14C into protein. Also, most of the radioactivityin the active pool disappeared within 10 min of the chase periodin the presence or absence of IAA, before the effect of IAAon protein synthesis was shown. Thus, neither can the pulse-chaseexperiment be used to study auxin-induced protein synthesis. IAA stimulated neither the formation of amino acids from acetate-14C,nor the incorporation of the newly formed amino acids into protein.However, IAA did stimulate both the uptake of sucrose-14C andpyruvate-14C into tissue and/or the formation of amino acidsfrom these substances, which resulted in stimulation of theincorporation of these radioactive amino acids into proteins.Enhancement effects of IAA on the rates of amino acid formationand the incorporation of amino acids into protein were of thesame magnitude. These results indicate that radioactive amino acids are spontaneouslyincorporated into proteins without any positive effect by IAA.Furthermore, IAA protects the degradation of some protein fractions.All diis evidence raises questions as to the validity of thehypothesis that auxin promotes protein synthesis. (Received July 17, 1972; )  相似文献   

20.
In hydroponically grown Lycopersicon esculentum (L.) Mill. cv.F144 the site of NO3 reduction and assimilation withinthe plant was shifted from the shoot to the root by salinity.Uptake of NO3 from the root solution was strongly inhibitedby salinization. Consequently, NO3 concentrations inthe leaf, stem and root tissues as well as the nitrate reductaseactivities of the leaves were lower in salinized than in controlplants. Lower NO3, but higher reduced-N, concentrationswere observed in the xylem sap as a result of the enhanced participationof the root in NO3 reduction in salinized plants. Lowerstem K+ concentrations and leaf malate concentrations were foundin salinized compared to control plants which indicates reducedfunctioning of the K+–shuttle in the salinized plants. Incorporation of inorganic carbon by the root was determinedby supplying a pulse of NaH14CO3 followed by extraction andseparation of the labelled products on ion exchange resins.The rate of H14CO3 incorporation was c. 2-fold higherin control than in salinized plants. In salinized plants theproducts of H14CO3 incorporation within the roots werediverted into amino acids, while the control plants divertedrelatively more 14C into organic acids. Products of inorganiccarbon incorporation in the roots of salinized plants providean anaplerotic source of carbon for assimilation of reducedNO3 into amino acids, while in control plants the productswere predominantly organic acids as part of mechanisms to maintainionic balance in the cells and in the xylem sap. Key words: Tomato, nitrate, PEPc, respiration, salinity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号