首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of synthetic peptidoglycan fragments, diaminopimelic acid (DAP)-containing desmuramylpeptides (DMP) and muramyldipeptide (MDP), induced secretion of interleukin (IL)-8 in a dose-dependent manner in human monocytic THP-1 cells, although high concentrations of compounds are required as compared with chemically synthesized Toll-like receptor (TLR) agonists mimicking bacterial components: TLR2 agonistic lipopeptide (Pam3CSSNA), TLR4 agonistic lipid A (LA-15-PP) and TLR9 agonistic bacterial CpG DNA. We found marked synergistic IL-8 secretion induced by MDP or DAP-containing DMP in combination with synthetic TLR agonists in THP-1 cells. Suppression of the mRNA expression of nucleotide-binding oligomerization domain (NOD)1 and NOD2 by RNA interference specifically inhibited the synergistic IL-8 secretion induced by DMP and MDP with these TLR agonists respectively. In accordance with the above results, enhanced IL-8 mRNA expression and the activation of nuclear factor (NF)-kappaB induced by MDP or DMP in combination with synthetic TLR agonists were markedly suppressed in NOD2- and NOD1-silenced cells respectively. These findings indicated that NOD2 and NOD1 are specifically responsible for the synergistic effects of MDP and DMP with TLR agonists, and suggested that in host innate immune responses to invading bacteria, combinatory dual signalling through extracellular TLRs and intracellular NODs might lead to the synergistic activation of host cells.  相似文献   

2.
NOD2 of the NLRs and TLR4 of the TLRs are major pattern-recognition receptors, which sense different microbial pathogens and have important roles in innate immunity. Herein, we investigated the roles of NOD2 in TLR4-mediated signalling and gene regulation in RAW264.7 macrophages. We found that MDP (a NOD2 ligand) increased LPS-induced expressions of TNF-α, IL-1β, IL-6, iNOS and COX-2. MDP did not affect LPS-induced activation of MAPKs or IKK, while it potentiated LPS-induced NF-κB activation. Meanwhile TLR4 activation increased NOD2 mRNA expression, and upregulated NOD2 upon MDP treatment is a positive regulator of TLR4-mediated signalling. Intriguingly we found that NOD2 silencing led to increases in LPS-induced signal transduction and inflammatory responses, and a decrease in LPS-elicited homologous tolerance. We thus propose that NOD2 in the absence of MDP treatment might also play a negative regulatory role in the action of TLR4. Further, we demonstrated that both CARD and LRR domains of the NOD2 protein were responsible for the negative regulatory action on TLR4. In summary, it is the first time to demonstrate that NOD2 have dual effects on TLR4 signalling and exert a novel ligand-independent action. Elucidating molecular mechanisms by which NOD2 exerts its ligand-independent action on TLR4 requires further investigation.  相似文献   

3.
Production of inducible antimicrobial peptides offers a first and rapid defense response of epithelial cells against invading microbes. Human beta-defensin-2 (hBD-2) is an antimicrobial peptide induced in various epithelia upon extracellular as well as intracellular bacterial challenge. Nucleotide-binding oligomerization domain protein 2 (NOD2/CARD15) is a cytosolic protein involved in intracellular recognition of microbes by sensing peptidoglycan fragments (e.g. muramyl dipeptide). We used luciferase as a reporter gene for a 2.3-kb hBD-2 promoter to test the hypothesis that NOD2 mediates the induction of hBD-2. Activation of NOD2 in NOD2-overexpressing human embryonic kidney 293 cells through its ligand muramyl dipeptide (MDP) induced hBD-2 expression. In contrast, overexpression of NOD2 containing the 3020insC frame-shift mutation, the most frequent NOD2 variant associated with Crohn disease, resulted in defective induction of hBD-2 through MDP. Luciferase gene reporter analyses and site-directed mutagenesis experiments demonstrated that functional binding sites for NF-kappaB and AP-1 in the hBD-2 promoter are required for NOD2-mediated induction of hBD-2 through MDP. Moreover, the NF-kappaB inhibitor Helenalin as well as a super-repressor form of the NF-kappaB inhibitor IkappaB strongly inhibited NOD2-mediated hBD-2 promoter activation. Expression of NOD2 was detected in primary keratinocytes, and stimulation of these cells with MDP induced hBD-2 peptide release. In contrast, small interference RNA-mediated down-regulation of NOD2 expression in primary keratinocytes resulted in a defective induction of hBD-2 upon MDP treatment. Together, these data suggest that NOD2 serves as an intracellular pattern recognition receptor to enhance host defense by inducing the production of antimicrobial peptides such as hBD-2.  相似文献   

4.
Nucleotide binding and oligomerization domain (NOD2) is a key component of innate immunity that is highly specific for muramyl dipeptide (MDP)—a peptidoglycan component of bacterial cell wall. MDP recognition by NOD2–leucine rich repeat (LRR) domain activates NF‐κB signaling through a protein–protein interaction between caspase activating and recruitment domains (CARDs) of NOD2 and downstream receptor interacting and activating protein kinase 2 (RIP2). Due to the lack of crystal/NMR structures, MDP recognition and CARD–CARD interaction are poorly understood. Herein, we have predicted the probable MDP and CARD–CARD binding surfaces in zebrafish NOD2 (zNOD2) using various in silico methodologies. The results show that the conserved residues Phe819, Phe871, Trp875, Trp929, Trp899, and Arg845 located at the concave face of zNOD2–LRR confer MDP recognition by hydrophobic and hydrogen bond (H‐bond) interactions. Molecular dynamics simulations reveal a stable association between the electropositive surface on zNOD2–CARDa and the electronegative surface on zRIP2–CARD reinforced mostly by H‐bonds and electrostatic interactions. Importantly, a 3.5 Å salt bridge is observed between Arg60 of zNOD2–CARDa and Asp494 of zRIP2–CARD. Arg11 and Lys53 of zNOD2–CARDa and Ser498 and Glu508 of zRIP2–CARD are critical residues for CARD–CARD interaction and NOD2 signaling. The 2.7 Å H‐bond between Lys104 of the linker and Glu508 of zRIP2–CARD suggests a possible role of the linker for shaping CARD–CARD interaction. These findings are consistent with existing mutagenesis data. We provide first insight into MDP recognition and CARD–CARD interaction in the zebrafish that will be useful to understand the molecular basis of NOD signaling in a broader perspective. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Multiple genetic variants of CARD15/NOD2 have been associated with susceptibility to Crohn's disease and Blau syndrome. NOD2 recognizes muramyl dipeptide (MDP) derived from bacterial peptidoglycan (PGN), but the molecular basis of recognition remains elusive. We performed systematic mutational analysis to gain insights into the function of NOD2 and molecular mechanisms of disease susceptibility. Using an archive of 519 mutations covering approximately 50% of the amino-acid residues of NOD2, the essential regulatory domains and specific residues of NOD2 involved in recognition of MDP were identified. The analysis revealed distinct roles for N-terminal and C-terminal leucine-rich repeats (LRRs) in the modulation of NOD2 activation and bacterial recognition. Within the C-terminal LRRs, variable residues predicted to form the beta-strand/betaturn structure were found to be essential for the response to MDP. In addition, we analyzed NOD1, a NOD2-related protein, revealing conserved and nonconserved amino-acid residues involved in PGN recognition. These results provide new insights into the molecular function and regulation of NOD2 and related NOD family proteins.  相似文献   

6.
G Jiang  D Sun  HJ Kaplan  H Shao 《PloS one》2012,7(7):e40510
On entering the tissues, infiltrating autoreactive T cells must be reactivated locally to gain pathogenic activity. We have previously reported that, when activated by Toll-like receptor 3 (TLR3) and TLR4 ligands, retinal astrocytes (RACs) are able to function as antigen-presenting cells to re-activate uveitogenic T cells and allow responder T cells to induce uveitis in mice. In the present study, we found that, although the triggering of TLR2 or nucleotide-binding oligomerization domain receptor 2 (NOD2) alone did not activate RACs, their combined triggering induced RACs with the phenotypes required to efficiently re-activate interphotoreceptor retinoid-binding protein (IRBP)-specific T cells. The synergistic effect of TLR2 and NOD2 ligands on RAC activation might be explained by the observations that bacterial lipoprotein (BLP, a TLR2 ligand) was able to upregulate NOD2 expression and the combination of BLP and muramyldipeptide (MDP, a NOD2 ligand) enhanced the expression of RICK (Rip2), the signaling molecule of NOD2. Moreover, the synergistic effect of MDP and BLP on RACs was lost when the RACs were derived from NOD2 knockout mice or were pre-treated with Rip2 antagonist. Thus, our data suggest that exogenous or endogenous molecules acting on both TLR2 and NOD2 on RACs might have an enhancing effect on susceptibility to autoimmune uveitis.  相似文献   

7.
Bacteria release flagellin that elicits innate responses via Toll-like receptor 5 (TLR5). Here, we investigated the fate of apically administrated full length flagellin from virulent and avirulent bacteria, along with truncated recombinant flagellin proteins in intestinal epithelial cells and cellular responses. Flagellin was internalized by intestinal epithelial cell (IEC) monolayers of IEC-18. Additionally, apically applied flagellin was internalized by polarized human Caco-2BBe and T-84 cells in a TLR5 dependent mechanism. More, flagellin exposure did not affect the integrity of intestinal monolayers. With immunofluorescent staining, internalized flagellin was detected in both early endosomes as well as lysosomes. We found that apical exposure of polarized Caco-2BBe and T-84 to flagellin from purified Salmonella, Escherichia coli O83:H1 (isolate from Crohn's lesion) or avirulent E. coli K12 induced comparable levels of basolateral IL-8 secretion. A recombinant protein representing the conserved amino (N) and carboxyl (C) domains (D) of the flagellin protein (ND1/2ECHCD2/1) induced IL-8 secretion from IEC similar to levels elicited by full-length flagellins. However, a recombinant flagellin protein containing only the D3 hypervariable region elicited no IL-8 secretion in both cell lines compared to un-stimulated controls. Silencing or blocking TLR5 in Caco-2BBe cells resulted in a lack of flagellin internalization and decreased IL-8 secretion. Furthermore, apical exposure to flagellin stimulated transepithelial migration of neutrophils and dendritic cells. The novel findings in this study show that luminal-applied flagellin is internalized by normal IEC via TLR5 and co-localizes to endosomal and lysosomal compartments where it is likely degraded as flagellin was not detected on the basolateral side of IEC cultures.  相似文献   

8.
The nucleotide-binding domain and leucine-rich repeat containing protein NOD2 serves as a cytoplasmic pattern recognition molecule sensing bacterial muramyl dipeptide (MDP), whereas TLR2 mediates cell surface recognition of bacterial lipopeptides. In this study, we show that NOD2 stimulation activated Rac1 in human THP-1 cells and primary human monocytes. Rac1 inhibition or knock-down, or actin cytoskeleton disruption increased MDP-stimulated IL-8 secretion and NF-kappaB activation, whereas TLR2-dependent cell activation was suppressed by Rac1 inhibition. p21-activated kinase [Pak]-interacting exchange factor (beta-PIX) plays a role in this negative regulation, because knock-down of beta-PIX also led to increased NOD2-mediated but not TLR2-mediated IL-8 secretion, and coimmunoprecipitation experiments demonstrated that NOD2 interacted with beta-PIX as well as Rac1 upon MDP stimulation. Moreover, knock-down of beta-PIX or Rac1 abrogated membrane recruitment of NOD2, and interaction of NOD2 with its negative regulator Erbin. Overall, our data indicate that beta-PIX and Rac1 mediate trafficking and negative regulation of NOD2-dependent signaling which is different from Rac1's positive regulatory role in TLR2 signaling.  相似文献   

9.
Peptidoglycan recognition proteins (PGRPs), a novel family of pattern recognition molecules (PRMs) in innate immunity conserved from insects to mammals, recognize bacterial cell wall peptidoglycan (PGN) and are suggested to act as anti-bacterial factors. In humans, four kinds of PGRPs (PGRP-L, -Ialpha, -Ibeta and -S) have been cloned and all four human PGRPs bind PGN. In this study, we examined the possible regulation of the expression of PGRPs in oral epithelial cells upon stimulation with chemically synthesized pathogen-associated molecular patterns (PAMPs) in bacterial cell surface components: Escherichia coli-type tryacyl lipopeptide (Pam3CSSNA), E. coli-type lipid A (LA-15-PP), diaminopimelic acid containing desmuramyl peptide (gamma-D-glutamyl-meso-DAP; iE-DAP), and muramyldipeptide (MDP). These synthetic PAMPs markedly upregulated the mRNA expression of the four PGRPs and cell surface expression of PGRP-Ialpha and -Ibeta, but did not induce either mRNA expression or secretion of inflammatory cytokines, in oral epithelial cells. Suppression of the expression of Toll-like receptor (TLR)2, TLR4, nucleotide-binding oligomerization domain (NOD)1 and NOD2 by RNA interference specifically inhibited the upregulation of PGRP mRNA expression induced by Pam3CSSNA, LA-15-PP, iE-DAP and MDP respectively. These PAMPs definitely activated nuclear factor (NF)-kappaB in the epithelial cells, and suppression of NF-kappaB activation clearly prevented the induction of PGRP mRNA expression induced by these PAMPs in the cells. These findings suggested that bacterial PAMPs induced the expression of PGRPs, but not proinflammatory cytokines, in oral epithelial cells, and the PGRPs might be involved in host defence against bacterial invasion without accompanying inflammatory responses.  相似文献   

10.
Bacterial peptidoglycan (PGN) has been reported to be sensed by cell-surface Toll-like receptor (TLR)2. On the other hand, intracellular NOD-like receptors recognize PGN partial structures: NOD1 and NOD2 recognize the peptide moiety containing diaminopimelic acid, and the muramyldipeptide (MDP) moiety, respectively. In this study, we examined in human monocytic THP-1 cells the pro-inflammatory cytokine-inducing abilities of PGNs and their fragments enzymatically prepared from Staphylococcus epidermidis ATCC 155: a polymer-type water-soluble PGN possessing an intact glycan chain (SEPS) and a monomer-type PGN (SEPS-M). The water-soluble PGN polymer, SEPS, exhibited considerably stronger activities to induce pro-inflammatory cytokines than parent PGNs and the PGN monomer, SEPS-M. Short interference RNA targeting TLR2 and NOD2 markedly reduced the activities of SEPS. In the same experiments, the activities of PGNs were mainly reduced in TLR2-silenced cells, whereas the activities of SEPS-M as well as a synthetic MDP were markedly reduced in NOD2-silenced cells. Furthermore, the PGNs and a reference PGN from Staphylococcus aureus in combination with MDP synergistically induced interleukin-8 in THP-1 cells. These findings strongly suggested that a polymer-type water-soluble PGN fragment, SEPS, exhibits both TLR2-and NOD2-agonistic activities, which induced the synergistic activation of human monocytic cells.  相似文献   

11.
Crohn's disease (CD) and ulcerative colitis (UC) are multifactorial diseases with a genetic background. Genes related to the innate immune response have been observed to be involved. Polymorphisms of Toll-like receptor 4 (TLR4) and CARD15/NOD2 are thought to be involved in the pathogenesis of inflammatory bowel disease (IBD). There is no information about the frequency of these polymorphisms in South American and Chilean populations. Aim. To investigate the distribution of CARD15/NOD2 (Arg702Trp, Gly908Arg and Leu1007fsinsC) and TLR4 (Asp299Gly) polymorphisms in Chilean patients with IBD. Methods. DNA was obtained from 22 CD, 22 UC patients and 20 healthy individuals. Genotyping was performed by allele-specific PCR and by PCR-RFLP analysis. Clinical and demographic features were characterized. Results. Among the CD patients, the clinical pattern was deemed inflammatory in 14, while five had penetrating and five stricturing, variants. One patient had esophageal involvement, five perianal, seven ileal and in 16 the colon was involved. Among the UC patients, two had proctitis, two proctosigmoiditis, four left-sided colitis and 14 pancolitis. NOD2/CARD15 analysis revealed the presence of the 702Trp allele in two CD patients (both heterozygotes), 1007fsinsC in one CD patient (heterozygote) while 908Arg was found in one UC patient. The 299Gly TLR4 allele was identified in one UC and one CD patient. Conclusion. This genetic study shows that the alleles frequently associated with IBD (1007fsinsC, 908Arg and 702Trp in NOD2/CARD15 and 299Gly TLR4) have a low incidence in Chilean, IBD patients, which is similar to European populations. It is possible that, in addition to environmental factors, other genetic polymorphisms may be involved in the pathogenesis of the disease in Chilean, IBD patients.  相似文献   

12.
Induction and localization of NOD2 protein in human endothelial cells   总被引:3,自引:0,他引:3  
  相似文献   

13.
NOD2, a cytosolic receptor for the bacterial proteoglycan fragment muramyl dipeptide (MDP), plays an important role in the recognition of intracellular pathogens. Variants in the bacterial sensor domain of NOD2 are genetically associated with an increased risk for the development of Crohn disease, a human chronic inflammatory bowel disease. In the present study, global protein expression changes after MDP stimulation were analyzed by two-dimensional PAGE of total protein extracts of human cultured cells stably transfected with expression constructs encoding for wild type NOD2 (NOD2(WT)) or the disease-associated NOD2 L1007fsinsC (NOD2(SNP13)) variant. Differentially regulated proteins were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) peptide mass fingerprinting and MALDI MS/MS. The limited overlap in the responses of the NOD2-overexpressing cell lines to MDP included a down-regulation of heat shock 70-kDa protein 4. A complex pro-inflammatory program regulated by NOD2(WT) that encompasses a regulation of key genes involved in protein folding, DNA repair, cellular redox homeostasis, and metabolism was observed both under normal growth conditions and after stimulation with MDP. By using the comparison of NOD2(WT) and disease-associated NOD2(SNP13) variant, we have identified a proteomic signature pattern that may further our understanding of the influence of genetic variations in the NOD2 gene in the pathophysiology of chronic inflammatory bowel disease.  相似文献   

14.
Kim HS  Shin TH  Yang SR  Seo MS  Kim DJ  Kang SK  Park JH  Kang KS 《PloS one》2010,5(10):e15369
Toll-like receptors (TLRs) and Nod-like receptors (NLRs) are known to trigger an innate immune response against microbial infection. Although studies suggest that activation of TLRs modulate the function of mesenchymal stem cells (MSCs), little is known about the role of NLRs on the MSC function. In this study, we investigated whether NOD1 and NOD2 regulate the functions of human umbilical cord blood-derived MSCs (hUCB-MSCs). The genes of TLR2, TLR4, NOD1, and NOD2 were expressed in hUCB-MSCs. Stimulation with each agonist (Pam(3)CSK(4) for TLR2, LPS for TLR4, Tri-DAP for NOD1, and MDP for NOD2) led to IL-8 production in hUCB-MSC, suggesting the expressed receptors are functional in hUCB-MSC. CCK-8 assay revealed that none of agonist influenced proliferation of hUCB-MSCs. We next examined whether TLR and NLR agonists affect osteogenic-, adipogenic-, and chondrogenic differentiation of hUCB-MSCs. Pam(3)CSK(4) and Tri-DAP strongly enhanced osteogenic differentiation and ERK phosphorylation in hUCB-MSCs, and LPS and MDP also slightly did. Treatment of U0126 (MEK1/2 inhibitor) restored osteogenic differentiation enhanced by Pam(3)CSK(4). Tri-DAP and MDP inhibited adipogenic differentiation of hUCB-MSCs, but Pam(3)CSK(4) and LPS did not. On chondrogenic differentiation, all TLR and NLR agonists could promote chondrogenesis of hUCB-MSCs with difference in the ability. Our findings suggest that NOD1 and NOD2 as well as TLRs are involved in regulating the differentiation of MSCs.  相似文献   

15.
NOD2 plays an important role in the innate immunity of the intestinal tract. By sensing the muramyl dipeptide (MDP), a bacterial wall component, NOD2 triggers the NF-kappaB signaling pathway and promotes the release of proinflammatory cytokines such as interleukin-8. Mutations in Nod2 (1007FS, R702W, G908R) impinge on NOD2 functions and are associated with the pathogenesis of Crohn disease, a chronic inflammatory bowel disease. Although NOD2 is usually described as a cytosolic receptor for MDP, the protein is also localized at the plasma membrane, and the 1007FS mutation delocalizes NOD2 to the cytoplasm (Barnich, N., Aguirre, J. E., Reinecker, H. C., Xavier, R., and Podolsky, D. K. (2005) J. Cell Biol. 170, 21-26; McDonald, C., Chen, F. F., Ollendorff, V., Ogura, Y., Marchetto, S., Lecine, P., Borg, J. P., and Nunez, G. (2005) J. Biol. Chem. 280, 40301-40309). In this study, we demonstrate that membrane-bound versions of NOD2 and Crohn disease-associated mutants R702W and G908R are capable of responding to MDP and activating the NF-kappaB pathway from this location. In contrast, the 1007FS mutant remains unable to respond to MDP from the plasma membrane. We also show that NOD2 promotes the membrane recruitment of RICK, a serine-threonine kinase involved in NF-kappaB activation downstream of NOD2. Furthermore, the artificial attachment of RICK at the plasma membrane provokes a constitutive and strong activation of the NF-kappaB pathway and secretion of interleukin-8 showing that optimal RICK activity depends upon its subcellular localization. Finally, we show that endogenous RICK localizes at the plasma membrane in the THP1 cell line. Thus, our data suggest that NOD2 is responsible for the membrane recruitment of RICK to induce a regulated NF-kappaB signaling and production of proinflammatory cytokines.  相似文献   

16.
17.
The Crohn's-disease-susceptibility protein, NOD2, coordinates signaling responses upon intracellular exposure to bacteria. Although NOD2 is known to activate NFkappaB, little is known about the molecular mechanisms by which NOD2 coordinates functionally separate signaling pathways such as NFkappaB, JNK, and p38 to regulate cytokine responses. Given that one of the characteristics of Crohn's disease is an altered cytokine response to normal bacterial flora, the coupling of signaling pathways could be important for Crohn's-disease pathophysiology. We find that a MAP3K, MEKK4, binds to RIP2 to sequester RIP2 from the NOD2 signaling pathway. This MEKK4:RIP2 complex dissociates upon exposure to the NOD2 agonist, MDP, allowing NOD2 to bind to RIP2 and activate NFkappaB. MEKK4 thus sequesters RIP2 to inhibit the NOD2:RIP2 complex from activating NFkappaB signaling pathways, and Crohn's-disease-associated NOD2 polymorphisms cannot compete with MEKK4 for RIP2 binding. Lastly, we find that MEKK4 helps dictate signal specificity downstream of NOD2 activation as knockdown of MEKK4 in macrophages exposed to MDP causes increased NFkappaB activity, absent p38 activity, and hyporesponsiveness to TLR2 and TLR4 agonists. These biochemical findings suggest that basal inhibition of the NOD2-driven NFkappaB pathway by MEKK4 could be important in the pathogenesis of Crohn's disease.  相似文献   

18.
We previously reported that nucleotide‐binding oligomerization domain‐containing protein (NOD) 2 was involved in the inflammatory responses to cerebral ischaemia/reperfusion (I/R) insult. However, the mechanism by which NOD2 participates in brain ischaemic injury and the regulation of NOD2 in the process are still obscure. Increased β‐arrestin 2 (ARRB2) expression was observed in microglia following cerebral I/R in wild‐type mice besides the up‐regulation of NOD2 and TRAF6. Stimulation of NOD2 by muramyl dipeptide (MDP) in BV2 cells induced the activation of NF‐κB by the phosphorylation of p65 subunit and the degradation of IκBα. Meanwhile, the protein level of Cyclooxygenase‐2 (COX‐2), the protein expression and activity of MMP‐9 were significantly increased in BV2 cells after administration of MDP. Furthermore, overexpression of ARRB2 significantly suppressed the inflammation induced by MDP, silence of ARRB2 significantly enhanced the inflammation induced by MDP in BV2 cells. In addition, we observed endogenous interaction of TRAF6 and ARRB2 after stimulation of MDP or cerebral I/R insult, indicating ARRB2 negatively regulates NOD2‐triggered inflammatory signalling pathway by associating with TRAF6 in microglia after cerebral I/R injury. Finally, the in vivo study clearly confirmed that ARRB2 negatively regulated NOD2‐induced inflammatory response, as ARRB2 deficiency exacerbated stroke outcomes and aggravated the NF‐κB signalling pathway induced by NOD2 stimulation after cerebral I/R injury. These findings revealed ARRB2 negatively regulated NOD2 signalling pathway through the association with TRAF6 in cerebral I/R injury.  相似文献   

19.
The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5) in mammals and flagellin-sensitive 2 (FLS2) in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacterium from the host. In order to prevent immune activation and thus favor survival in the host, bacteria secrete many proteins that hamper such recognition. In our search for Toll like receptor (TLR) antagonists, we screened bacterial supernatants and identified alkaline protease (AprA) of Pseudomonas aeruginosa as a TLR5 signaling inhibitor as evidenced by a marked reduction in IL-8 production and NF-κB activation. AprA effectively degrades the TLR5 ligand monomeric flagellin, while polymeric flagellin (involved in bacterial motility) and TLR5 itself resist degradation. The natural occurring alkaline protease inhibitor AprI of P. aeruginosa blocked flagellin degradation by AprA. P. aeruginosa aprA mutants induced an over 100-fold enhanced activation of TLR5 signaling, because they fail to degrade excess monomeric flagellin in their environment. Interestingly, AprA also prevents flagellin-mediated immune responses (such as growth inhibition and callose deposition) in Arabidopsis thaliana plants. This was due to decreased activation of the receptor FLS2 and clearly demonstrated by delayed stomatal closure with live bacteria in plants. Thus, by degrading the ligand for TLR5 and FLS2, P. aeruginosa escapes recognition by the innate immune systems of both mammals and plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号